How resource abundance and resource stochasticity affect organisms' range sizes.

IF 3.4 1区 生物学 Q2 ECOLOGY Movement Ecology Pub Date : 2025-03-20 DOI:10.1186/s40462-025-00546-5
Stefano Mezzini, Christen H Fleming, E Patrícia Medici, Michael J Noonan
{"title":"How resource abundance and resource stochasticity affect organisms' range sizes.","authors":"Stefano Mezzini, Christen H Fleming, E Patrícia Medici, Michael J Noonan","doi":"10.1186/s40462-025-00546-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>From megafauna to amoebas, the amount of space heterotrophic organisms use is thought to be tightly linked to the availability of resources within their habitats, such that organisms living in productive habitats generally require less space than those in resource-poor habitats. This hypothesis has widespread empirical support, but existing studies have focused primarily on responses to spatiotemporal changes in mean resources, while responses to unpredictable changes in resources (i.e., variance in resources or resource stochasticity) are still largely unknown. Since organisms adjust to variable environmental conditions, failing to consider the effects of resource unpredictability can result in an insufficient understanding of an organism's range size.</p><p><strong>Methods: </strong>We leverage the available literature to provide a unifying framework and hypothesis for the effects of resource abundance and stochasticity on organisms' range sizes. We then use simulated movement data to demonstrate how the combined effects of resource abundance and stochasticity interact to shape predictable patterns in range size. Finally, we test the hypothesis using real-world tracking data on a lowland tapir (Tapirus terrestris) from the Brazilian Cerrado.</p><p><strong>Results: </strong>Organisms' range sizes decrease nonlinearly with resource abundance and increase nonlinearly with resource stochasticity, and the effects of resource stochasticity depend strongly on resource abundance. Additionally, the distribution and predictability of resources can exacerbate the effects of other drivers of movement, such as resource depletion, competition, and predation.</p><p><strong>Conclusions: </strong>Accounting for resource abundance and stochasticity is crucial for understanding the movement behavior of free-ranging organisms. Failing to account for resource stochasticity can lead to an incomplete and incorrect understanding of how and why organisms move, particularly during periods of rapid change.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"13 1","pages":"20"},"PeriodicalIF":3.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11927164/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-025-00546-5","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: From megafauna to amoebas, the amount of space heterotrophic organisms use is thought to be tightly linked to the availability of resources within their habitats, such that organisms living in productive habitats generally require less space than those in resource-poor habitats. This hypothesis has widespread empirical support, but existing studies have focused primarily on responses to spatiotemporal changes in mean resources, while responses to unpredictable changes in resources (i.e., variance in resources or resource stochasticity) are still largely unknown. Since organisms adjust to variable environmental conditions, failing to consider the effects of resource unpredictability can result in an insufficient understanding of an organism's range size.

Methods: We leverage the available literature to provide a unifying framework and hypothesis for the effects of resource abundance and stochasticity on organisms' range sizes. We then use simulated movement data to demonstrate how the combined effects of resource abundance and stochasticity interact to shape predictable patterns in range size. Finally, we test the hypothesis using real-world tracking data on a lowland tapir (Tapirus terrestris) from the Brazilian Cerrado.

Results: Organisms' range sizes decrease nonlinearly with resource abundance and increase nonlinearly with resource stochasticity, and the effects of resource stochasticity depend strongly on resource abundance. Additionally, the distribution and predictability of resources can exacerbate the effects of other drivers of movement, such as resource depletion, competition, and predation.

Conclusions: Accounting for resource abundance and stochasticity is crucial for understanding the movement behavior of free-ranging organisms. Failing to account for resource stochasticity can lead to an incomplete and incorrect understanding of how and why organisms move, particularly during periods of rapid change.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Movement Ecology
Movement Ecology Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍: Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.
期刊最新文献
How resource abundance and resource stochasticity affect organisms' range sizes. Ecological drivers of movement for two sympatric marine predators in the California current large marine ecosystem. Location of capture sufficiently characterises lifetime growth trajectories in a highly mobile fish. Physical and biological effects on moths' navigation performance. A new data-driven paradigm for the study of avian migratory navigation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1