High-Throughput Microdroplet-Based Synthesis using Automated Array-to-Array Transfer

IF 7.6 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Science Pub Date : 2025-03-21 DOI:10.1039/d5sc00638d
Kai-Hung Huang, Kitmin Chen, Nicolás M Morato, Thomas Sams, Eric Thomas Dziekonski, R. Graham Cooks
{"title":"High-Throughput Microdroplet-Based Synthesis using Automated Array-to-Array Transfer","authors":"Kai-Hung Huang, Kitmin Chen, Nicolás M Morato, Thomas Sams, Eric Thomas Dziekonski, R. Graham Cooks","doi":"10.1039/d5sc00638d","DOIUrl":null,"url":null,"abstract":"Automation of chemical synthesis and high-throughput (HT) screening are important for speeding up drug discovery. Here, we describe an automated HT picomole scale synthesis system which uses desorption electrospray ionization (DESI) to create microdroplets of reaction mixtures at individual positions from a two-dimensional reactant array and transfer them to a corresponding position in an array of collected reaction products. On-the-fly chemical transformations are facilitated by the reaction acceleration phenomenon in microdroplets and high reaction conversions are achieved during the milliseconds droplet flight time from the reactant to the product array. Successful functionalization of bioactive molecules is demonstrated through the generation of 172 analogs (64% success rate) using multiple reaction types. Synthesis throughput is ~45 seconds/reaction including droplet formation, reaction, and collection steps, all of which occur in an integrated fashion, generating product amounts sufficient for subsequent bioactivity screening (low ng to low µg). Quantitative performance was validated using LC/MS. This system bridges the demonstrated capabilities of HT-DESI for reaction screening and label-free bioassays, allowing consolidation of the key early drug discovery steps around a single synthetic-analytical technology.","PeriodicalId":9909,"journal":{"name":"Chemical Science","volume":"425 1","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Science","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1039/d5sc00638d","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Automation of chemical synthesis and high-throughput (HT) screening are important for speeding up drug discovery. Here, we describe an automated HT picomole scale synthesis system which uses desorption electrospray ionization (DESI) to create microdroplets of reaction mixtures at individual positions from a two-dimensional reactant array and transfer them to a corresponding position in an array of collected reaction products. On-the-fly chemical transformations are facilitated by the reaction acceleration phenomenon in microdroplets and high reaction conversions are achieved during the milliseconds droplet flight time from the reactant to the product array. Successful functionalization of bioactive molecules is demonstrated through the generation of 172 analogs (64% success rate) using multiple reaction types. Synthesis throughput is ~45 seconds/reaction including droplet formation, reaction, and collection steps, all of which occur in an integrated fashion, generating product amounts sufficient for subsequent bioactivity screening (low ng to low µg). Quantitative performance was validated using LC/MS. This system bridges the demonstrated capabilities of HT-DESI for reaction screening and label-free bioassays, allowing consolidation of the key early drug discovery steps around a single synthetic-analytical technology.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemical Science
Chemical Science CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
14.40
自引率
4.80%
发文量
1352
审稿时长
2.1 months
期刊介绍: Chemical Science is a journal that encompasses various disciplines within the chemical sciences. Its scope includes publishing ground-breaking research with significant implications for its respective field, as well as appealing to a wider audience in related areas. To be considered for publication, articles must showcase innovative and original advances in their field of study and be presented in a manner that is understandable to scientists from diverse backgrounds. However, the journal generally does not publish highly specialized research.
期刊最新文献
A Leigh syndrome mutation perturbs long-range energy coupling in respiratory complex I High-Throughput Microdroplet-Based Synthesis using Automated Array-to-Array Transfer Back cover Thiophene-backbone Arcuate Graphene Nanoribbons: Shotgun Synthesis and Length dependent Properties High-affinity 1:2 recognition based on naphthyl-azocalix[4]arene and its application as a cleavable noncovalent connector in constructing responsive supramolecular polymeric materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1