Intermediate Electronic Coupling via Silane and Germane Bridges in Silicon Quantum Dot–Molecular Hybrid Systems

IF 9.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY Nano Letters Pub Date : 2025-03-22 DOI:10.1021/acs.nanolett.5c00169
Nhien Q. Nguyen, Sina G. Lewis, Kefu Wang, Honghao Wang, Aracely Gonzalez, Lorenzo Mangolini, Sean T. Roberts, Ming Lee Tang, Joel D. Eaves, Timothy A. Su
{"title":"Intermediate Electronic Coupling via Silane and Germane Bridges in Silicon Quantum Dot–Molecular Hybrid Systems","authors":"Nhien Q. Nguyen, Sina G. Lewis, Kefu Wang, Honghao Wang, Aracely Gonzalez, Lorenzo Mangolini, Sean T. Roberts, Ming Lee Tang, Joel D. Eaves, Timothy A. Su","doi":"10.1021/acs.nanolett.5c00169","DOIUrl":null,"url":null,"abstract":"In hybrid Si quantum dot (QD) nanostructures, the bridge connecting the QD and molecular transmitter significantly influences photophysical transformations such as triplet exciton transfer. Here, we present two Si QD:anthracene hybrid systems with molecular silane or germane bridges that, for the first time, enable access to an intermediate QD-anthracene coupling regime. We first describe a new surface functionalization approach that uses methyl radical-mediated dehydrocoupling to install aryldialkylsilanes and germanes onto hydride-terminated Si QD surfaces. Transient absorption spectroscopy and density functional theory calculations show these tetrel bridges mediate QD-anthracene coupling strengths that are intermediate between π-conjugated vinyl and nonconjugated ethyl bridges. We optimize the new hybrids in a triplet upconversion system with 9,10-diphenylanthracene emitters and achieve photon upconversion efficiencies of 6.2% and 5.1% for silane and germane systems, respectively. This work shows that main group element bridges can provide access to QD-transmitter coupling characteristics that are distinct from conventional organic bridges.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"2 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00169","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

In hybrid Si quantum dot (QD) nanostructures, the bridge connecting the QD and molecular transmitter significantly influences photophysical transformations such as triplet exciton transfer. Here, we present two Si QD:anthracene hybrid systems with molecular silane or germane bridges that, for the first time, enable access to an intermediate QD-anthracene coupling regime. We first describe a new surface functionalization approach that uses methyl radical-mediated dehydrocoupling to install aryldialkylsilanes and germanes onto hydride-terminated Si QD surfaces. Transient absorption spectroscopy and density functional theory calculations show these tetrel bridges mediate QD-anthracene coupling strengths that are intermediate between π-conjugated vinyl and nonconjugated ethyl bridges. We optimize the new hybrids in a triplet upconversion system with 9,10-diphenylanthracene emitters and achieve photon upconversion efficiencies of 6.2% and 5.1% for silane and germane systems, respectively. This work shows that main group element bridges can provide access to QD-transmitter coupling characteristics that are distinct from conventional organic bridges.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
硅量子点-分子杂化体系中通过硅烷和锗烷桥实现的中间电子耦合
在杂化硅量子点(QD)纳米结构中,连接QD和分子传递器的桥对三重态激子转移等光物理转化有显著影响。在这里,我们提出了两个Si QD:蒽杂化体系与分子硅烷或锗桥,这是第一次,使进入中间QD-蒽偶联制度。我们首先描述了一种新的表面功能化方法,该方法使用甲基自由基介导的脱氢偶联将芳基二烷基硅烷和日耳曼烷安装到氢化物端的Si量子点表面上。瞬态吸收光谱和密度泛函理论计算表明,这些四烷基桥介导了π共轭乙烯基和非共轭乙基桥之间的qd -蒽偶联强度。我们在含有9,10-二苯基蒽的三重态上转换体系中优化了新的杂化体,硅烷和锗体系的光子上转换效率分别达到6.2%和5.1%。这项工作表明,主群元素桥可以提供与传统有机桥不同的qd -发射机耦合特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nano Letters
Nano Letters 工程技术-材料科学:综合
CiteScore
16.80
自引率
2.80%
发文量
1182
审稿时长
1.4 months
期刊介绍: Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including: - Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale - Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies - Modeling and simulation of synthetic, assembly, and interaction processes - Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance - Applications of nanoscale materials in living and environmental systems Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.
期刊最新文献
Strengthening Antisense Oligonucleotide-Mediated Anti-Tumor Immunity via Metal–Organic Framework Nanoparticles B-Site Engineering in Ruddlesden–Popper Perovskites (A2BO4) for H2O2 Production with 4.85% of Solar-to-Chemical Efficiency Issue Publication Information Issue Editorial Masthead Colorless and Transparent Semialicyclic Polyimide Aerogels with Mechanical Durability for Thermal Insulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1