Nhien Q. Nguyen, Sina G. Lewis, Kefu Wang, Honghao Wang, Aracely Gonzalez, Lorenzo Mangolini, Sean T. Roberts, Ming Lee Tang, Joel D. Eaves, Timothy A. Su
{"title":"Intermediate Electronic Coupling via Silane and Germane Bridges in Silicon Quantum Dot–Molecular Hybrid Systems","authors":"Nhien Q. Nguyen, Sina G. Lewis, Kefu Wang, Honghao Wang, Aracely Gonzalez, Lorenzo Mangolini, Sean T. Roberts, Ming Lee Tang, Joel D. Eaves, Timothy A. Su","doi":"10.1021/acs.nanolett.5c00169","DOIUrl":null,"url":null,"abstract":"In hybrid Si quantum dot (QD) nanostructures, the bridge connecting the QD and molecular transmitter significantly influences photophysical transformations such as triplet exciton transfer. Here, we present two Si QD:anthracene hybrid systems with molecular silane or germane bridges that, for the first time, enable access to an intermediate QD-anthracene coupling regime. We first describe a new surface functionalization approach that uses methyl radical-mediated dehydrocoupling to install aryldialkylsilanes and germanes onto hydride-terminated Si QD surfaces. Transient absorption spectroscopy and density functional theory calculations show these tetrel bridges mediate QD-anthracene coupling strengths that are intermediate between π-conjugated vinyl and nonconjugated ethyl bridges. We optimize the new hybrids in a triplet upconversion system with 9,10-diphenylanthracene emitters and achieve photon upconversion efficiencies of 6.2% and 5.1% for silane and germane systems, respectively. This work shows that main group element bridges can provide access to QD-transmitter coupling characteristics that are distinct from conventional organic bridges.","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"2 1","pages":""},"PeriodicalIF":9.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c00169","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In hybrid Si quantum dot (QD) nanostructures, the bridge connecting the QD and molecular transmitter significantly influences photophysical transformations such as triplet exciton transfer. Here, we present two Si QD:anthracene hybrid systems with molecular silane or germane bridges that, for the first time, enable access to an intermediate QD-anthracene coupling regime. We first describe a new surface functionalization approach that uses methyl radical-mediated dehydrocoupling to install aryldialkylsilanes and germanes onto hydride-terminated Si QD surfaces. Transient absorption spectroscopy and density functional theory calculations show these tetrel bridges mediate QD-anthracene coupling strengths that are intermediate between π-conjugated vinyl and nonconjugated ethyl bridges. We optimize the new hybrids in a triplet upconversion system with 9,10-diphenylanthracene emitters and achieve photon upconversion efficiencies of 6.2% and 5.1% for silane and germane systems, respectively. This work shows that main group element bridges can provide access to QD-transmitter coupling characteristics that are distinct from conventional organic bridges.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.