A Large Area Hybrid Phototransistor Platform with Large Detectivity and Fast Response to NIR Light

IF 5.3 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Electronic Materials Pub Date : 2025-03-22 DOI:10.1002/aelm.202400762
Federico Prescimone, Wejdan S. AlGhamdi, Giulia Baroni, Marco Natali, Aiman Fakieh, Hendrik Faber, Margherita Bolognesi, Thomas D. Anthopoulos, Stefano Toffanin
{"title":"A Large Area Hybrid Phototransistor Platform with Large Detectivity and Fast Response to NIR Light","authors":"Federico Prescimone,&nbsp;Wejdan S. AlGhamdi,&nbsp;Giulia Baroni,&nbsp;Marco Natali,&nbsp;Aiman Fakieh,&nbsp;Hendrik Faber,&nbsp;Margherita Bolognesi,&nbsp;Thomas D. Anthopoulos,&nbsp;Stefano Toffanin","doi":"10.1002/aelm.202400762","DOIUrl":null,"url":null,"abstract":"<p>Within multijunction organic and hybrid photodetectors (PDs), organic and hybrid phototransistors (HPTs) hold promises for high sensitivity (S) and specific detectivity (D*). However, it is difficult to achieve a trade-off between a large sensing area, a fast response, and a high D*. Here, we propose an alternative phototransistor concept relying on a geometrically engineered tri-channel (Tr-iC) architecture with a 4-mm<sup>2</sup> large sensing area, applied to a multilayer HPT whose active region is comprised of an inorganic In<sub>2</sub>O<sub>3</sub>/ZnO n-type field-effect channel and solution-processed organic bulk heterojunction (BHJ) or hybrid perovskite light-sensing layer. The resulting HPTs combine a responsivity (R) up to 10<sup>5</sup> A/W, thanks to the efficient charge transport (at the bottom In<sub>2</sub>O<sub>3</sub>/ZnO layer) and a D* estimated at 10<sup>15</sup>Jones, which allows to measure low light power densities down to 10 nW cm<sup>−2</sup>. These figures of merit are coupled to a fast response (risetime &lt;10 ms and falltime of ≈100 ms for illumination, in the µW/cm<sup>2</sup> range), which is comparable to the time-response of organic PDs in a diode architecture. The experimental data are supported by a comprehensive device modeling, which helps highlighting the peculiar advantages of the proposed large area, Tr-iC, and multilayer HPT architecture.</p>","PeriodicalId":110,"journal":{"name":"Advanced Electronic Materials","volume":"11 17","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://advanced.onlinelibrary.wiley.com/doi/epdf/10.1002/aelm.202400762","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Electronic Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/aelm.202400762","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Within multijunction organic and hybrid photodetectors (PDs), organic and hybrid phototransistors (HPTs) hold promises for high sensitivity (S) and specific detectivity (D*). However, it is difficult to achieve a trade-off between a large sensing area, a fast response, and a high D*. Here, we propose an alternative phototransistor concept relying on a geometrically engineered tri-channel (Tr-iC) architecture with a 4-mm2 large sensing area, applied to a multilayer HPT whose active region is comprised of an inorganic In2O3/ZnO n-type field-effect channel and solution-processed organic bulk heterojunction (BHJ) or hybrid perovskite light-sensing layer. The resulting HPTs combine a responsivity (R) up to 105 A/W, thanks to the efficient charge transport (at the bottom In2O3/ZnO layer) and a D* estimated at 1015Jones, which allows to measure low light power densities down to 10 nW cm−2. These figures of merit are coupled to a fast response (risetime <10 ms and falltime of ≈100 ms for illumination, in the µW/cm2 range), which is comparable to the time-response of organic PDs in a diode architecture. The experimental data are supported by a comprehensive device modeling, which helps highlighting the peculiar advantages of the proposed large area, Tr-iC, and multilayer HPT architecture.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种对近红外光具有高探测率和快速响应的大面积混合光电晶体管平台
在多结有机和混合光电探测器(pd)中,有机和混合光电晶体管(hpt)有望具有高灵敏度(S)和特定探测率(D*)。然而,在大的传感面积、快速的响应和高的D*之间很难实现权衡。在这里,我们提出了一种替代的光电晶体管概念,该概念依赖于具有4 mm2大传感面积的几何工程三通道(Tr-iC)结构,应用于多层HPT,其有源区域由无机In2O3/ZnO n型场效应通道和溶液处理有机体异质结(BHJ)或混合钙钛矿光传感层组成。由于高效的电荷传输(在In2O3/ZnO层的底部)和估计为1015Jones的D*,由此产生的hpt结合了高达105 a /W的响应率(R),这使得可以测量低至10 nW cm−2的低光功率密度。这些优点与快速响应相结合(在µW/cm2范围内,照明的上升时间为10 ms,下降时间为≈100 ms),可与二极管结构中的有机pd的时间响应相媲美。实验数据由全面的器件建模支持,这有助于突出所提出的大面积,Tr-iC和多层HPT架构的独特优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Advanced Electronic Materials
Advanced Electronic Materials NANOSCIENCE & NANOTECHNOLOGYMATERIALS SCIE-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
11.00
自引率
3.20%
发文量
433
期刊介绍: Advanced Electronic Materials is an interdisciplinary forum for peer-reviewed, high-quality, high-impact research in the fields of materials science, physics, and engineering of electronic and magnetic materials. It includes research on physics and physical properties of electronic and magnetic materials, spintronics, electronics, device physics and engineering, micro- and nano-electromechanical systems, and organic electronics, in addition to fundamental research.
期刊最新文献
Recycled Piezoelectric Materials with Competitive Second‐Life Functional Properties Synaptic Behavior in SnSe 2 Field‐Effect Transistors Induced by Surface Oxide and Trap Dynamics Aging and Electrical Stability of DNTT Honey‐Gated OFETs The Rise of Organic Electrochemical Transistors for Brain‐Inspired Neuromorphic Computing Tunable Electronic and Optoelectronic Properties of MoS 2 Through Molecular Coverage‐Controlled Polyoxometalate Doping (Adv. Electron. Mater. 4/2026)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1