New insights into odor release from sediments in Lake Chaohu and the potential role of sediment microbial communities

IF 12.2 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL Journal of Hazardous Materials Pub Date : 2025-03-21 DOI:10.1016/j.jhazmat.2025.138007
Haining Huang, Qinyi Chen, Yuang Ding, Bingjie Zhao, Zhicong Wang, Dunhai Li
{"title":"New insights into odor release from sediments in Lake Chaohu and the potential role of sediment microbial communities","authors":"Haining Huang, Qinyi Chen, Yuang Ding, Bingjie Zhao, Zhicong Wang, Dunhai Li","doi":"10.1016/j.jhazmat.2025.138007","DOIUrl":null,"url":null,"abstract":"Odor events often occur along with algal blooms, posing potential threats to water quality and human health. However, studies on the role of sediments and microbial communities in the production and release of odor compounds remain limited. Seasonal monitoring of Lake Chaohu revealed that pore-terpenoids significantly contributed to terpenoid concentrations in water, explaining 37.1% of their variability. Environmental factors like temperature primarily influenced terpenoid concentrations by regulating the diffusion of pore-terpenoids. Conversely, pore-nor-carotenoids explained only 11.2% of nor-carotenoid variability, with phytoplankton communities explaining 59.4%. Abiotic factors like nutrients influenced nor-carotenoid levels by impacting phytoplankton growth. Microbial communities with a greater proportion of cyanobacteria exhibited more fragile microbial networks, increased competition, and enhanced metabolic activity. We hypothesized that microbial community composition may influence odor production. Laboratory experiments further supported this: sediments with added cyanobacteria showed a 48.1% reduction in 2-methylisoborneol contents after 30-day incubation, whereas the control group exhibited a 66.38% increase. Conversely, the experimental group showed significant increases in β-cyclocitral (99.19%) and β-ionone (48.55%), while the control group experienced reductions of 54.01% and 43.53%, respectively. These findings underscore the importance of considering microbial interactions and sediment dynamics in future odor research, offering insights for water quality management in eutrophic lakes.","PeriodicalId":361,"journal":{"name":"Journal of Hazardous Materials","volume":"27 1","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Hazardous Materials","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.jhazmat.2025.138007","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Odor events often occur along with algal blooms, posing potential threats to water quality and human health. However, studies on the role of sediments and microbial communities in the production and release of odor compounds remain limited. Seasonal monitoring of Lake Chaohu revealed that pore-terpenoids significantly contributed to terpenoid concentrations in water, explaining 37.1% of their variability. Environmental factors like temperature primarily influenced terpenoid concentrations by regulating the diffusion of pore-terpenoids. Conversely, pore-nor-carotenoids explained only 11.2% of nor-carotenoid variability, with phytoplankton communities explaining 59.4%. Abiotic factors like nutrients influenced nor-carotenoid levels by impacting phytoplankton growth. Microbial communities with a greater proportion of cyanobacteria exhibited more fragile microbial networks, increased competition, and enhanced metabolic activity. We hypothesized that microbial community composition may influence odor production. Laboratory experiments further supported this: sediments with added cyanobacteria showed a 48.1% reduction in 2-methylisoborneol contents after 30-day incubation, whereas the control group exhibited a 66.38% increase. Conversely, the experimental group showed significant increases in β-cyclocitral (99.19%) and β-ionone (48.55%), while the control group experienced reductions of 54.01% and 43.53%, respectively. These findings underscore the importance of considering microbial interactions and sediment dynamics in future odor research, offering insights for water quality management in eutrophic lakes.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Hazardous Materials
Journal of Hazardous Materials 工程技术-工程:环境
CiteScore
25.40
自引率
5.90%
发文量
3059
审稿时长
58 days
期刊介绍: The Journal of Hazardous Materials serves as a global platform for promoting cutting-edge research in the field of Environmental Science and Engineering. Our publication features a wide range of articles, including full-length research papers, review articles, and perspectives, with the aim of enhancing our understanding of the dangers and risks associated with various materials concerning public health and the environment. It is important to note that the term "environmental contaminants" refers specifically to substances that pose hazardous effects through contamination, while excluding those that do not have such impacts on the environment or human health. Moreover, we emphasize the distinction between wastes and hazardous materials in order to provide further clarity on the scope of the journal. We have a keen interest in exploring specific compounds and microbial agents that have adverse effects on the environment.
期刊最新文献
Machine learning-driven simultaneous quantification of Cd(II) and Cu(II) on Co2P/CoP heterostructure: enhanced electrochemical signals via activated Co-P electron bridge Boosted toxicity reduction and deep removal of As(III) over porous Fe-doped Co3O4 nano brush-like array anode: Trade-off between electrocatalytic activity and adsorption capacity Affected Interactions and Co-transport of Cadmium Sulfide Quantum Dots with Pb2+ by Surface Functionalization Boron-induced phenylpropanoid metabolism, Na+/K+ homeostasis and antioxidant defense mechanisms in salt-stressed soybean seedlings Integrated Hydrothermal Characterization of DNAPL Source Zones and Subsurface Heterogeneity for Enhancing DNAPL Thermal Remediation Prediction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1