Enhanced Whole Tumor Cell-Based Vaccines by a RAFT and Protein Fusion Strategy for Tumor Immunotherapy.

IF 5.5 2区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Biomacromolecules Pub Date : 2025-03-21 DOI:10.1021/acs.biomac.5c00115
He Yang, Ruyan Feng, Xingyu Heng, Fangjian Shan, Yichen Wang, Lihua Yao, Sujian Wang, Gaojian Chen, Hong Chen
{"title":"Enhanced Whole Tumor Cell-Based Vaccines by a RAFT and Protein Fusion Strategy for Tumor Immunotherapy.","authors":"He Yang, Ruyan Feng, Xingyu Heng, Fangjian Shan, Yichen Wang, Lihua Yao, Sujian Wang, Gaojian Chen, Hong Chen","doi":"10.1021/acs.biomac.5c00115","DOIUrl":null,"url":null,"abstract":"<p><p>Inactivated whole tumor cell-based vaccines (WTVs) are a promising strategy for tumor immunotherapy, but have exhibited limited antitumor effects clinically. Aiming at constructing enhanced WTVs, we developed glycopolymer-engineered WTVs (G-WTVs) using a Halo-Tag protein (HTP) fusion technique and reversible addition-fragmentation chain transfer (RAFT) polymerization. In our study, G-WTVs with varying molecular weights of glycopolymers were constructed. Compared to unmodified tumor cells, all G-WTVs effectively induced the polarization of macrophages toward the M1 phenotype and promoted the secretion of pro-inflammatory cytokines. This enhanced immune response was attributed to the improved interactions between G-WTVs and the macrophages. Among the G-WTVs, the medium molecular weight variant demonstrated the most pronounced enhancement of antitumor immune responses. Notably, the administration of optimized G-WTVs effectively inhibited the growth of B16 melanoma in mice. Our findings provide a new approach to enhance the antitumor efficacy of WTVs via cell membrane glycopolymer engineering, offering a promising strategy for tumor immunotherapy.</p>","PeriodicalId":30,"journal":{"name":"Biomacromolecules","volume":" ","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomacromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.biomac.5c00115","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Inactivated whole tumor cell-based vaccines (WTVs) are a promising strategy for tumor immunotherapy, but have exhibited limited antitumor effects clinically. Aiming at constructing enhanced WTVs, we developed glycopolymer-engineered WTVs (G-WTVs) using a Halo-Tag protein (HTP) fusion technique and reversible addition-fragmentation chain transfer (RAFT) polymerization. In our study, G-WTVs with varying molecular weights of glycopolymers were constructed. Compared to unmodified tumor cells, all G-WTVs effectively induced the polarization of macrophages toward the M1 phenotype and promoted the secretion of pro-inflammatory cytokines. This enhanced immune response was attributed to the improved interactions between G-WTVs and the macrophages. Among the G-WTVs, the medium molecular weight variant demonstrated the most pronounced enhancement of antitumor immune responses. Notably, the administration of optimized G-WTVs effectively inhibited the growth of B16 melanoma in mice. Our findings provide a new approach to enhance the antitumor efficacy of WTVs via cell membrane glycopolymer engineering, offering a promising strategy for tumor immunotherapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
Tb2CoMnO6 double perovskites nanoparticles as photocatalyst for the degradation of organic dyes: Synthesis and characterization
IF 6 2区 化学Arabian Journal of ChemistryPub Date : 2021-10-01 DOI: 10.1016/j.arabjc.2021.103349
Mina Dara , Mohammad Hassanpour , Omid Amiri , Mahin Baladi , Masoud Salavati-Niasari
来源期刊
Biomacromolecules
Biomacromolecules 化学-高分子科学
CiteScore
10.60
自引率
4.80%
发文量
417
审稿时长
1.6 months
期刊介绍: Biomacromolecules is a leading forum for the dissemination of cutting-edge research at the interface of polymer science and biology. Submissions to Biomacromolecules should contain strong elements of innovation in terms of macromolecular design, synthesis and characterization, or in the application of polymer materials to biology and medicine. Topics covered by Biomacromolecules include, but are not exclusively limited to: sustainable polymers, polymers based on natural and renewable resources, degradable polymers, polymer conjugates, polymeric drugs, polymers in biocatalysis, biomacromolecular assembly, biomimetic polymers, polymer-biomineral hybrids, biomimetic-polymer processing, polymer recycling, bioactive polymer surfaces, original polymer design for biomedical applications such as immunotherapy, drug delivery, gene delivery, antimicrobial applications, diagnostic imaging and biosensing, polymers in tissue engineering and regenerative medicine, polymeric scaffolds and hydrogels for cell culture and delivery.
期刊最新文献
Engineered Assemblies from Constitutionally Isomeric Peptides Modulate Antimicrobial Activity. Dual-Responsive Ultrathin Peptoid Nanofibers Assembled from Amphiphilic Alternating Peptoids with an Integration of Azobenzene and Histamine Moieties. Hyperstable and Fibril-Forming Collagen-Mimetic Peptides in Shortest Triple Helices: Empowering the Capping by π-systems. Lipid-Modified PEI Derivative-Based Binary/Ternary Polyplex Formulations for the Delivery of pDNA and mRNA in Primary Cells. Diboronate-Modified Hyaluronic Acid for Glucose-Responsive Insulin Delivery.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1