Yi-an Mao , Xiaozhou Shi , Pingyuan Sun , Michail Spanos , Liyun Zhu , Hang Chen , Xiya Wang , Chanyuan Su , Yanjia Jin , Xu Wang , Xuerui Chen , Junjie Xiao
{"title":"Nanomedicines for cardiovascular diseases: Lessons learned and pathways forward","authors":"Yi-an Mao , Xiaozhou Shi , Pingyuan Sun , Michail Spanos , Liyun Zhu , Hang Chen , Xiya Wang , Chanyuan Su , Yanjia Jin , Xu Wang , Xuerui Chen , Junjie Xiao","doi":"10.1016/j.biomaterials.2025.123271","DOIUrl":null,"url":null,"abstract":"<div><div>Cardiovascular diseases (CVDs) are vital causes of global mortality. Apart from lifestyle intervention like exercise for high-risk groups or patients at early period, various medical interventions such as percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG) surgery have been clinically used to reduce progression and prevalence of CVDs. However, invasive surgery risk and severe complications still contribute to ventricular remodeling, even heart failure. Innovations in nanomedicines have fueled impressive medical advances, representing a CVD therapeutic alternative. Currently, clinical translation of nanomedicines from bench to bedside continues to suffer unpredictable biosafety and orchestrated behavior mechanism, which, if appropriately addressed, might pave the way for their clinical implementation in the future. While state-of-the-art advances in CVDs nanomedicines are widely summarized in this review, the focus lies on urgent preclinical concerns and is transitioned to the ongoing clinical trials including stem cells-based, extracellular vesicles (EV)-based, gene, and Chimeric Antigen Receptor T (CAR T) cell therapy whose clinically applicable potential in CVD therapy will hopefully provide first answers. Overall, this review aims to provide a concise but comprehensive understanding of perspectives and challenges of CVDs nanomedicines, especially from a clinical perspective.</div></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"320 ","pages":"Article 123271"},"PeriodicalIF":12.8000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961225001905","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Cardiovascular diseases (CVDs) are vital causes of global mortality. Apart from lifestyle intervention like exercise for high-risk groups or patients at early period, various medical interventions such as percutaneous coronary intervention (PCI) and coronary artery bypass graft (CABG) surgery have been clinically used to reduce progression and prevalence of CVDs. However, invasive surgery risk and severe complications still contribute to ventricular remodeling, even heart failure. Innovations in nanomedicines have fueled impressive medical advances, representing a CVD therapeutic alternative. Currently, clinical translation of nanomedicines from bench to bedside continues to suffer unpredictable biosafety and orchestrated behavior mechanism, which, if appropriately addressed, might pave the way for their clinical implementation in the future. While state-of-the-art advances in CVDs nanomedicines are widely summarized in this review, the focus lies on urgent preclinical concerns and is transitioned to the ongoing clinical trials including stem cells-based, extracellular vesicles (EV)-based, gene, and Chimeric Antigen Receptor T (CAR T) cell therapy whose clinically applicable potential in CVD therapy will hopefully provide first answers. Overall, this review aims to provide a concise but comprehensive understanding of perspectives and challenges of CVDs nanomedicines, especially from a clinical perspective.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.