Scaling up the graphene production from R&D to the pilot plant stage: Implications for workers' exposure to airborne nano-objects

IF 4.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES NanoImpact Pub Date : 2025-03-19 DOI:10.1016/j.impact.2025.100555
Claudio Natale , Francesca Tombolini , Riccardo Ferrante , Francesca Sebastiani , Andrea Gordiani , Maurizio Manigrasso , Antonio Esau Del Rio Castillo , Francesco Bonaccorso , Stefania Sabella , Fabio Boccuni
{"title":"Scaling up the graphene production from R&D to the pilot plant stage: Implications for workers' exposure to airborne nano-objects","authors":"Claudio Natale ,&nbsp;Francesca Tombolini ,&nbsp;Riccardo Ferrante ,&nbsp;Francesca Sebastiani ,&nbsp;Andrea Gordiani ,&nbsp;Maurizio Manigrasso ,&nbsp;Antonio Esau Del Rio Castillo ,&nbsp;Francesco Bonaccorso ,&nbsp;Stefania Sabella ,&nbsp;Fabio Boccuni","doi":"10.1016/j.impact.2025.100555","DOIUrl":null,"url":null,"abstract":"<div><div>Given the exceptional thermal, electrical, and mechanical properties of graphene, the interest is now shifting from scientific and technological application to industrial deployment, testified by the significant increase in demand for graphene-based products. Consequently, it is paramount that occupational safety and health (OSH) research now places utmost importance on ensuring the well-being of workers at every stage of graphene production. The present study evaluates workers' exposure potential during the production cycle of few-layer graphene (FLG) by liquid-phase exfoliation, incorporating the Prevention-through-Design approach in the transition from the laboratory scale to the pilot plant production. A measurement campaign was conducted according to the multi-metric approach proposed by the Organization for Economic Cooperation and Development and European Committee for Standardization guidelines. Multi-metric real-time instruments were used to determine particle number concentration (PNC), particle size distribution and lung deposited surface area (LDSA) along with time-integrated instrumentation to collect airborne ultrafine dust for off-line gravimetric analysis and chemical and morphological characterization. The obtained data indicate that the FLG powders storage, including the cleaning of equipment and surfaces, is the most critical step for exposed workers, with higher levels of PNC and LDSA compared to the other production phases. Recommendations for OSH risk mitigation strategies in the scaling up of the FLG production process have been proposed according to OSH principles for nano and advanced materials development. In particular, production and storage of FLG in liquid suspension or bound to a solid matrix should be preferred rather than in powder form. When not possible, a closed system with local exhaust ventilation is recommended. Finally, if the particles transport towards other areas of the plant is not properly mitigated, the sole use of personal protective equipment during the powder handling phases will be not sufficient for protecting workers from the potential exposure.</div></div>","PeriodicalId":18786,"journal":{"name":"NanoImpact","volume":"38 ","pages":"Article 100555"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NanoImpact","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2452074825000151","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Given the exceptional thermal, electrical, and mechanical properties of graphene, the interest is now shifting from scientific and technological application to industrial deployment, testified by the significant increase in demand for graphene-based products. Consequently, it is paramount that occupational safety and health (OSH) research now places utmost importance on ensuring the well-being of workers at every stage of graphene production. The present study evaluates workers' exposure potential during the production cycle of few-layer graphene (FLG) by liquid-phase exfoliation, incorporating the Prevention-through-Design approach in the transition from the laboratory scale to the pilot plant production. A measurement campaign was conducted according to the multi-metric approach proposed by the Organization for Economic Cooperation and Development and European Committee for Standardization guidelines. Multi-metric real-time instruments were used to determine particle number concentration (PNC), particle size distribution and lung deposited surface area (LDSA) along with time-integrated instrumentation to collect airborne ultrafine dust for off-line gravimetric analysis and chemical and morphological characterization. The obtained data indicate that the FLG powders storage, including the cleaning of equipment and surfaces, is the most critical step for exposed workers, with higher levels of PNC and LDSA compared to the other production phases. Recommendations for OSH risk mitigation strategies in the scaling up of the FLG production process have been proposed according to OSH principles for nano and advanced materials development. In particular, production and storage of FLG in liquid suspension or bound to a solid matrix should be preferred rather than in powder form. When not possible, a closed system with local exhaust ventilation is recommended. Finally, if the particles transport towards other areas of the plant is not properly mitigated, the sole use of personal protective equipment during the powder handling phases will be not sufficient for protecting workers from the potential exposure.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
NanoImpact
NanoImpact Social Sciences-Safety Research
CiteScore
11.00
自引率
6.10%
发文量
69
审稿时长
23 days
期刊介绍: NanoImpact is a multidisciplinary journal that focuses on nanosafety research and areas related to the impacts of manufactured nanomaterials on human and environmental systems and the behavior of nanomaterials in these systems.
期刊最新文献
Scaling up the graphene production from R&D to the pilot plant stage: Implications for workers' exposure to airborne nano-objects Impact of polystyrene nanoplastics on physiology, nutrient uptake, and root system architecture of aeroponically grown citrus plants Regulatory preparedness for multicomponent nanomaterials: Current state, gaps and challenges of REACH The dispersion method does not affect the in vitro genotoxicity of multi-walled carbon nanotubes despite inducing surface alterations Nano versus bulk: Evaluating the toxicity of lanthanum, yttrium, and cerium oxides on Enchytraeus crypticus
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1