Deficient synaptic neurotransmission results in a persistent sleep-like cortical activity across vigilance states in mice.

IF 8.1 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Current Biology Pub Date : 2025-03-18 DOI:10.1016/j.cub.2025.02.053
Mathilde C C Guillaumin, Christian D Harding, Lukas B Krone, Tomoko Yamagata, Martin C Kahn, Cristina Blanco-Duque, Gareth T Banks, Peter Achermann, Cecilia Diniz Behn, Patrick M Nolan, Stuart N Peirson, Vladyslav V Vyazovskiy
{"title":"Deficient synaptic neurotransmission results in a persistent sleep-like cortical activity across vigilance states in mice.","authors":"Mathilde C C Guillaumin, Christian D Harding, Lukas B Krone, Tomoko Yamagata, Martin C Kahn, Cristina Blanco-Duque, Gareth T Banks, Peter Achermann, Cecilia Diniz Behn, Patrick M Nolan, Stuart N Peirson, Vladyslav V Vyazovskiy","doi":"10.1016/j.cub.2025.02.053","DOIUrl":null,"url":null,"abstract":"<p><p>Growing evidence suggests that brain activity during sleep, as well as sleep regulation, are tightly linked with synaptic function and network excitability at the local and global levels. We previously reported that a mutation in synaptobrevin 2 (Vamp2) in restless (rlss) mice results in a marked increase of wakefulness and suppression of sleep, in particular REM sleep (REMS), as well as increased consolidation of sleep and wakefulness. In this study, using finer-scale in vivo electrophysiology recordings, we report that spontaneous cortical activity in rlss mice during NREM sleep (NREMS) is characterized by an occurrence of abnormally prolonged periods of complete neuronal silence (OFF-periods), often lasting several seconds, similar to the burst suppression pattern typically seen under deep anesthesia. Increased incidence of prolonged network OFF-periods was not specific to NREMS but also present in REMS and wake in rlss mice. Slow-wave activity (SWA) was generally increased in rlss mice relative to controls, while higher frequencies, including theta-frequency activity, were decreased, further resulting in diminished differences between vigilance states. The relative increase in SWA after sleep deprivation was attenuated in rlss mice, suggesting either that rlss mice experience persistently elevated sleep pressure or, alternatively, that the intrusion of sleep-like patterns of activity into the wake state attenuates the accumulation of sleep drive. We propose that a deficit in global synaptic neurotransmitter release leads to \"state inertia,\" reflected in an abnormal propensity of brain networks to enter and remain in a persistent \"default state\" resembling coma or deep anesthesia.</p>","PeriodicalId":11359,"journal":{"name":"Current Biology","volume":" ","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cub.2025.02.053","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Growing evidence suggests that brain activity during sleep, as well as sleep regulation, are tightly linked with synaptic function and network excitability at the local and global levels. We previously reported that a mutation in synaptobrevin 2 (Vamp2) in restless (rlss) mice results in a marked increase of wakefulness and suppression of sleep, in particular REM sleep (REMS), as well as increased consolidation of sleep and wakefulness. In this study, using finer-scale in vivo electrophysiology recordings, we report that spontaneous cortical activity in rlss mice during NREM sleep (NREMS) is characterized by an occurrence of abnormally prolonged periods of complete neuronal silence (OFF-periods), often lasting several seconds, similar to the burst suppression pattern typically seen under deep anesthesia. Increased incidence of prolonged network OFF-periods was not specific to NREMS but also present in REMS and wake in rlss mice. Slow-wave activity (SWA) was generally increased in rlss mice relative to controls, while higher frequencies, including theta-frequency activity, were decreased, further resulting in diminished differences between vigilance states. The relative increase in SWA after sleep deprivation was attenuated in rlss mice, suggesting either that rlss mice experience persistently elevated sleep pressure or, alternatively, that the intrusion of sleep-like patterns of activity into the wake state attenuates the accumulation of sleep drive. We propose that a deficit in global synaptic neurotransmitter release leads to "state inertia," reflected in an abnormal propensity of brain networks to enter and remain in a persistent "default state" resembling coma or deep anesthesia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
突触神经递质不足会导致小鼠在不同警觉状态下出现持续的睡眠样皮质活动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Biology
Current Biology 生物-生化与分子生物学
CiteScore
11.80
自引率
2.20%
发文量
869
审稿时长
46 days
期刊介绍: Current Biology is a comprehensive journal that showcases original research in various disciplines of biology. It provides a platform for scientists to disseminate their groundbreaking findings and promotes interdisciplinary communication. The journal publishes articles of general interest, encompassing diverse fields of biology. Moreover, it offers accessible editorial pieces that are specifically designed to enlighten non-specialist readers.
期刊最新文献
Polyploid cyanobacterial genomes provide a reservoir of mutations, allowing rapid evolution of herbicide resistance. A neural computational framework for face processing in the human temporal lobe. Deficient synaptic neurotransmission results in a persistent sleep-like cortical activity across vigilance states in mice. Highly accurate Batesian mimicry of wasps dates back to the Early Oligocene and was driven by non-passerine birds. Passive responses in mouse hind leg locomotion.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1