Using Wear Time for the Analysis of Consumer-Grade Wearables' Data: Case Study Using Fitbit Data.

IF 5.4 2区 医学 Q1 HEALTH CARE SCIENCES & SERVICES JMIR mHealth and uHealth Pub Date : 2025-03-21 DOI:10.2196/46149
Loubna Baroudi, Ronald Fredrick Zernicke, Muneesh Tewari, Noelle E Carlozzi, Sung Won Choi, Stephen M Cain
{"title":"Using Wear Time for the Analysis of Consumer-Grade Wearables' Data: Case Study Using Fitbit Data.","authors":"Loubna Baroudi, Ronald Fredrick Zernicke, Muneesh Tewari, Noelle E Carlozzi, Sung Won Choi, Stephen M Cain","doi":"10.2196/46149","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Consumer-grade wearables allow researchers to capture a representative picture of human behavior in the real world over extended periods. However, maintaining users' engagement remains a challenge and can lead to a decrease in compliance (eg, wear time in the context of wearable sensors) over time (eg, \"wearables' abandonment\").</p><p><strong>Objective: </strong>In this work, we analyzed datasets from diverse populations (eg, caregivers for various health issues, college students, and pediatric oncology patients) to quantify the impact that wear time requirements can have on study results. We found evidence that emphasizes the need to account for participants' wear time in the analysis of consumer-grade wearables data. In Aim 1, we demonstrate the sensitivity of parameter estimates to different data processing methods with respect to wear time. In Aim 2, we demonstrate that not all research questions necessitate the same wear time requirements; some parameter estimates are not sensitive to wear time.</p><p><strong>Methods: </strong>We analyzed 3 Fitbit datasets comprising 6 different clinical and healthy population samples. For Aim 1, we analyzed the sensitivity of average daily step count and average daily heart rate at the population sample and individual levels to different methods of defining \"valid\" days using wear time. For Aim 2, we evaluated whether some research questions can be answered with data from lower compliance population samples. We explored (1) the estimation of the average daily step count and (2) the estimation of the average heart rate while walking.</p><p><strong>Results: </strong>For Aim 1, we found that the changes in the population sample average daily step count could reach 2000 steps for different methods of analysis and were dependent on the wear time compliance of the sample. As expected, population samples with a low daily wear time (less than 15 hours of wear time per day) showed the most sensitivity to changes in methods of analysis. On the individual level, we observed that around 15% of individuals had a difference in step count higher than 1000 steps for 4 of the 6 population samples analyzed when using different data processing methods. Those individual differences were higher than 3000 steps for close to 5% of individuals across all population samples. Average daily heart rate appeared to be robust to changes in wear time. For Aim 2, we found that, for 5 population samples out of 6, around 11% of individuals had enough data for the estimation of average heart rate while walking but not for the estimation of their average daily step count.</p><p><strong>Conclusions: </strong>We leveraged datasets from diverse populations to demonstrate the direct relationship between parameter estimates from consumer-grade wearable devices and participants' wear time. Our findings highlighted the importance of a thorough analysis of wear time when processing data from consumer-grade wearables to ensure the relevance and reliability of the associated findings.</p>","PeriodicalId":14756,"journal":{"name":"JMIR mHealth and uHealth","volume":"13 ","pages":"e46149"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR mHealth and uHealth","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2196/46149","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Consumer-grade wearables allow researchers to capture a representative picture of human behavior in the real world over extended periods. However, maintaining users' engagement remains a challenge and can lead to a decrease in compliance (eg, wear time in the context of wearable sensors) over time (eg, "wearables' abandonment").

Objective: In this work, we analyzed datasets from diverse populations (eg, caregivers for various health issues, college students, and pediatric oncology patients) to quantify the impact that wear time requirements can have on study results. We found evidence that emphasizes the need to account for participants' wear time in the analysis of consumer-grade wearables data. In Aim 1, we demonstrate the sensitivity of parameter estimates to different data processing methods with respect to wear time. In Aim 2, we demonstrate that not all research questions necessitate the same wear time requirements; some parameter estimates are not sensitive to wear time.

Methods: We analyzed 3 Fitbit datasets comprising 6 different clinical and healthy population samples. For Aim 1, we analyzed the sensitivity of average daily step count and average daily heart rate at the population sample and individual levels to different methods of defining "valid" days using wear time. For Aim 2, we evaluated whether some research questions can be answered with data from lower compliance population samples. We explored (1) the estimation of the average daily step count and (2) the estimation of the average heart rate while walking.

Results: For Aim 1, we found that the changes in the population sample average daily step count could reach 2000 steps for different methods of analysis and were dependent on the wear time compliance of the sample. As expected, population samples with a low daily wear time (less than 15 hours of wear time per day) showed the most sensitivity to changes in methods of analysis. On the individual level, we observed that around 15% of individuals had a difference in step count higher than 1000 steps for 4 of the 6 population samples analyzed when using different data processing methods. Those individual differences were higher than 3000 steps for close to 5% of individuals across all population samples. Average daily heart rate appeared to be robust to changes in wear time. For Aim 2, we found that, for 5 population samples out of 6, around 11% of individuals had enough data for the estimation of average heart rate while walking but not for the estimation of their average daily step count.

Conclusions: We leveraged datasets from diverse populations to demonstrate the direct relationship between parameter estimates from consumer-grade wearable devices and participants' wear time. Our findings highlighted the importance of a thorough analysis of wear time when processing data from consumer-grade wearables to ensure the relevance and reliability of the associated findings.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
JMIR mHealth and uHealth
JMIR mHealth and uHealth Medicine-Health Informatics
CiteScore
12.60
自引率
4.00%
发文量
159
审稿时长
10 weeks
期刊介绍: JMIR mHealth and uHealth (JMU, ISSN 2291-5222) is a spin-off journal of JMIR, the leading eHealth journal (Impact Factor 2016: 5.175). JMIR mHealth and uHealth is indexed in PubMed, PubMed Central, and Science Citation Index Expanded (SCIE), and in June 2017 received a stunning inaugural Impact Factor of 4.636. The journal focusses on health and biomedical applications in mobile and tablet computing, pervasive and ubiquitous computing, wearable computing and domotics. JMIR mHealth and uHealth publishes since 2013 and was the first mhealth journal in Pubmed. It publishes even faster and has a broader scope with including papers which are more technical or more formative/developmental than what would be published in the Journal of Medical Internet Research.
期刊最新文献
Using Wear Time for the Analysis of Consumer-Grade Wearables' Data: Case Study Using Fitbit Data. Proximal Effects of a Just-in-Time Adaptive Intervention for Smoking Cessation With Wearable Sensors: Microrandomized Trial. Preferences for Mobile Apps That Aim to Modify Alcohol Use: Thematic Content Analysis of User Reviews. The Role of Environmental Factors in Technology-Assisted Physical Activity Intervention Studies Among Older Adults: Scoping Review. An Actor-Partner Interdependence Mediation Model for Assessing the Association Between Health Literacy and mHealth Use Intention in Dyads of Patients With Chronic Heart Failure and Their Caregivers: Cross-Sectional Study.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1