{"title":"Wrist-Worn and Arm-Worn Wearables for Monitoring Heart Rate During Sedentary and Light-to-Vigorous Physical Activities: Device Validation Study.","authors":"Theresa Schweizer, Rahel Gilgen-Ammann","doi":"10.2196/67110","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Heart rate (HR) is a vital physiological parameter, serving as an indicator of homeostasis and a key metric for monitoring cardiovascular health and physiological responses. Wearable devices using photoplethysmography (PPG) technology provide noninvasive HR monitoring in real-life settings, but their performance may vary due to factors such as wearing position, blood flow, motion, and device updates. Therefore, ongoing validation of their accuracy and reliability across different activities is essential.</p><p><strong>Objectives: </strong>This study aimed to assess the accuracy and reliability of the HR measurement from the PPG-based Polar Verity Sense and the Polar Vantage V2 devices across a range of physical activities and intensities as well as wearing positions (ie, upper arm, forearm, and both wrists).</p><p><strong>Methods: </strong>Sixteen healthy participants were recruited to participate in this study protocol, which involved 9 activities of varying intensities, ranging from lying down to high-intensity interval training, each repeated twice. The HR measurements from the Verity Sense and Vantage V2 were compared with the criterion measure Polar H10 electrocardiogram (ECG) chest strap. The data were processed to eliminate artifacts and outliers. Accuracy and reliability were assessed using multiple statistical methods, including systematic bias (mean of differences), mean absolute error (MAE) and mean absolute percentage error (MAPE), Pearson product moment correlation coefficient (r), Lin concordance correlation coefficient (CCC), and within-subject coefficient of variation (WSCV).</p><p><strong>Results: </strong>All 16 participants (female=7; male=9; mean 27.4, SD 5.8 years) completed the study. The Verity Sense, worn on the upper arm, demonstrated excellent accuracy across most activities, with a systematic bias of -0.05 bpm, MAE of 1.43 bpm, MAPE of 1.35%, r=1.00, and CCC=1.00. It also demonstrated high reliability across all activities with a WSCV of 2.57% and no significant differences between the 2 sessions. The wrist-worn Vantage V2 demonstrated moderate accuracy with a slight overestimation compared with the ECG and considerable variation in accuracy depending on the activity. For the nondominant wrist, it demonstrated a systematic bias of 2.56 bpm, MAE of 6.41 bpm, MAPE 6.82%, r=0.93, and CCC=0.92. Reliability varied considerably, ranging from a WSCV of 3.64% during postexercise sitting to 23.03% during lying down.</p><p><strong>Conclusions: </strong>The Verity Sense was found to be highly accurate and reliable, outperforming many other wearable HR devices and establishing itself as a strong alternative to ECG-based chest straps, especially when worn on the upper arm. The Vantage V2 was found to have moderate accuracy, with performance highly dependent on activity type and intensity. While it exhibited greater variability and limitations at lower HR, it performed better at higher intensities and outperformed several wrist-worn devices from previous research, particularly during vigorous activities. These findings highlight the importance of device selection and wearing position to ensure the highest possible accuracy in the intended context.</p>","PeriodicalId":14706,"journal":{"name":"JMIR Cardio","volume":"9 ","pages":"e67110"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JMIR Cardio","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2196/67110","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Heart rate (HR) is a vital physiological parameter, serving as an indicator of homeostasis and a key metric for monitoring cardiovascular health and physiological responses. Wearable devices using photoplethysmography (PPG) technology provide noninvasive HR monitoring in real-life settings, but their performance may vary due to factors such as wearing position, blood flow, motion, and device updates. Therefore, ongoing validation of their accuracy and reliability across different activities is essential.
Objectives: This study aimed to assess the accuracy and reliability of the HR measurement from the PPG-based Polar Verity Sense and the Polar Vantage V2 devices across a range of physical activities and intensities as well as wearing positions (ie, upper arm, forearm, and both wrists).
Methods: Sixteen healthy participants were recruited to participate in this study protocol, which involved 9 activities of varying intensities, ranging from lying down to high-intensity interval training, each repeated twice. The HR measurements from the Verity Sense and Vantage V2 were compared with the criterion measure Polar H10 electrocardiogram (ECG) chest strap. The data were processed to eliminate artifacts and outliers. Accuracy and reliability were assessed using multiple statistical methods, including systematic bias (mean of differences), mean absolute error (MAE) and mean absolute percentage error (MAPE), Pearson product moment correlation coefficient (r), Lin concordance correlation coefficient (CCC), and within-subject coefficient of variation (WSCV).
Results: All 16 participants (female=7; male=9; mean 27.4, SD 5.8 years) completed the study. The Verity Sense, worn on the upper arm, demonstrated excellent accuracy across most activities, with a systematic bias of -0.05 bpm, MAE of 1.43 bpm, MAPE of 1.35%, r=1.00, and CCC=1.00. It also demonstrated high reliability across all activities with a WSCV of 2.57% and no significant differences between the 2 sessions. The wrist-worn Vantage V2 demonstrated moderate accuracy with a slight overestimation compared with the ECG and considerable variation in accuracy depending on the activity. For the nondominant wrist, it demonstrated a systematic bias of 2.56 bpm, MAE of 6.41 bpm, MAPE 6.82%, r=0.93, and CCC=0.92. Reliability varied considerably, ranging from a WSCV of 3.64% during postexercise sitting to 23.03% during lying down.
Conclusions: The Verity Sense was found to be highly accurate and reliable, outperforming many other wearable HR devices and establishing itself as a strong alternative to ECG-based chest straps, especially when worn on the upper arm. The Vantage V2 was found to have moderate accuracy, with performance highly dependent on activity type and intensity. While it exhibited greater variability and limitations at lower HR, it performed better at higher intensities and outperformed several wrist-worn devices from previous research, particularly during vigorous activities. These findings highlight the importance of device selection and wearing position to ensure the highest possible accuracy in the intended context.