{"title":"VaMIEL1-Mediated Ubiquitination of VaMYB4a Orchestrates Cold Tolerance through Integrated Transcriptional and Oxidative Stress Pathways in Grapevine","authors":"Yaping Xie, Kai Lv, Qinhan Yu, Jieping Wu, Junxia Zhang, Huixian Zhao, Junduo Li, Ningbo Zhang, Weirong Xu","doi":"10.1093/hr/uhaf093","DOIUrl":null,"url":null,"abstract":"Cold stress poses a significant threat to viticulture, particularly under the increasing pressures of climate change. In this study, we identified VaMIEL1, a RING-type E3 ubiquitin ligase from Vitis amurensis, as a negative regulator of cold tolerance. Under normal temperature conditions, VaMIEL1 facilitates the ubiquitination and subsequent proteasomal degradation of the cold-responsive transcription factor VaMYB4a, thereby attenuating its regulatory role in the CBF-COR signaling cascade. However, under cold stress, VaMIEL1 expression is downregulated, leading to the stabilization of VaMYB4a and the activation of CBF-COR signaling.Through a combination of biochemical assays and functional analysis in Arabidopsis thaliana and grapevine calli, we demonstrate that VaMIEL1 overexpression reduces cold tolerance, as evidenced by increased oxidative stress, excessive ROS accumulation, and downregulated expression of cold-responsive genes. Conversely, silencing of VaMIEL1 enhances cold tolerance by stabilizing VaMYB4a and boosting antioxidant defenses. These findings uncover a previously unrecognized regulatory mechanism by which VaMIEL1 modulates cold tolerance through transcriptional and oxidative stress pathways, offering potential targets for the development of climate-resilient grapevine cultivars and other crops.","PeriodicalId":13179,"journal":{"name":"Horticulture Research","volume":"220 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Horticulture Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1093/hr/uhaf093","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Cold stress poses a significant threat to viticulture, particularly under the increasing pressures of climate change. In this study, we identified VaMIEL1, a RING-type E3 ubiquitin ligase from Vitis amurensis, as a negative regulator of cold tolerance. Under normal temperature conditions, VaMIEL1 facilitates the ubiquitination and subsequent proteasomal degradation of the cold-responsive transcription factor VaMYB4a, thereby attenuating its regulatory role in the CBF-COR signaling cascade. However, under cold stress, VaMIEL1 expression is downregulated, leading to the stabilization of VaMYB4a and the activation of CBF-COR signaling.Through a combination of biochemical assays and functional analysis in Arabidopsis thaliana and grapevine calli, we demonstrate that VaMIEL1 overexpression reduces cold tolerance, as evidenced by increased oxidative stress, excessive ROS accumulation, and downregulated expression of cold-responsive genes. Conversely, silencing of VaMIEL1 enhances cold tolerance by stabilizing VaMYB4a and boosting antioxidant defenses. These findings uncover a previously unrecognized regulatory mechanism by which VaMIEL1 modulates cold tolerance through transcriptional and oxidative stress pathways, offering potential targets for the development of climate-resilient grapevine cultivars and other crops.
期刊介绍:
Horticulture Research, an open access journal affiliated with Nanjing Agricultural University, has achieved the prestigious ranking of number one in the Horticulture category of the Journal Citation Reports ™ from Clarivate, 2022. As a leading publication in the field, the journal is dedicated to disseminating original research articles, comprehensive reviews, insightful perspectives, thought-provoking comments, and valuable correspondence articles and letters to the editor. Its scope encompasses all vital aspects of horticultural plants and disciplines, such as biotechnology, breeding, cellular and molecular biology, evolution, genetics, inter-species interactions, physiology, and the origination and domestication of crops.