{"title":"Deciphering Volume Changes in Li-S Solid-State Battery components during Cycling: Implication for Advanced Battery Design","authors":"Huainan Qu, Tianyao Ding, Xiaoxiao Zhang, Dantong Qiu, Peng Chen, Dong Zheng, Dongping Lu, Deyang Qu","doi":"10.1016/j.nanoen.2025.110887","DOIUrl":null,"url":null,"abstract":"In this work, we developed custom fixtures to investigate the mechanical and electrochemical behavior of all-solid-state lithium batteries during cycling under constant pressure and constant volume conditions. We successfully monitored vertical displacements during constant pressure cycling and pressure variations during constant volume cycling, allowing us decouple volume changes in the sulfur, Li₂S cathodes, Li<sub>x</sub>In anode, and solid-state electrolyte. Scanning electron microscopy and electrochemical impedance spectroscopy confirmed that two structural changes occur during ASSLB cycling: (1) irreversible fractures in the active material particles, and (2) void formation within the electrode matrix. While the fractures in primary particles are permanent, void formation can be mitigated through stack pressure, which promotes particle rearrangement in the electrode matrix. Our findings emphasize the importance of stack pressure in maintaining the microscale integrity of all-solid-state lithium batteries, preventing void formation and enhance battery performance and durability.","PeriodicalId":394,"journal":{"name":"Nano Energy","volume":"61 1","pages":""},"PeriodicalIF":16.8000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.nanoen.2025.110887","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we developed custom fixtures to investigate the mechanical and electrochemical behavior of all-solid-state lithium batteries during cycling under constant pressure and constant volume conditions. We successfully monitored vertical displacements during constant pressure cycling and pressure variations during constant volume cycling, allowing us decouple volume changes in the sulfur, Li₂S cathodes, LixIn anode, and solid-state electrolyte. Scanning electron microscopy and electrochemical impedance spectroscopy confirmed that two structural changes occur during ASSLB cycling: (1) irreversible fractures in the active material particles, and (2) void formation within the electrode matrix. While the fractures in primary particles are permanent, void formation can be mitigated through stack pressure, which promotes particle rearrangement in the electrode matrix. Our findings emphasize the importance of stack pressure in maintaining the microscale integrity of all-solid-state lithium batteries, preventing void formation and enhance battery performance and durability.
期刊介绍:
Nano Energy is a multidisciplinary, rapid-publication forum of original peer-reviewed contributions on the science and engineering of nanomaterials and nanodevices used in all forms of energy harvesting, conversion, storage, utilization and policy. Through its mixture of articles, reviews, communications, research news, and information on key developments, Nano Energy provides a comprehensive coverage of this exciting and dynamic field which joins nanoscience and nanotechnology with energy science. The journal is relevant to all those who are interested in nanomaterials solutions to the energy problem.
Nano Energy publishes original experimental and theoretical research on all aspects of energy-related research which utilizes nanomaterials and nanotechnology. Manuscripts of four types are considered: review articles which inform readers of the latest research and advances in energy science; rapid communications which feature exciting research breakthroughs in the field; full-length articles which report comprehensive research developments; and news and opinions which comment on topical issues or express views on the developments in related fields.