Zheng Wang, Yanli Zhu, Yu Yao, Wenyu Zhang, Bo Wang, Jing Wang, Yang Yang, Liwen Liu
{"title":"Natural products targeting regulated cell deaths for adriamycin-induced cardiotoxicity.","authors":"Zheng Wang, Yanli Zhu, Yu Yao, Wenyu Zhang, Bo Wang, Jing Wang, Yang Yang, Liwen Liu","doi":"10.1038/s41420-025-02389-w","DOIUrl":null,"url":null,"abstract":"<p><p>Adriamycin (ADR), as an anti-cancer drug in routine clinical application, is utilized to treat various cancers such as ovarian cancer, hematological malignant tumor, and endometrial carcinoma. However, its serious dose-dependent cardiotoxicity extremely limits its clinical application. Currently, there remains a dearth of therapeutic agents to mitigate ADR-induced cardiotoxicity. Extensive research has demonstrated that ADR can simultaneously trigger various regulated cell death (RCD) pathways, such as apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis. Therefore, drugs targeting these RCD pathways may represent effective strategies for treating ADR-induced cardiotoxicity. Natural products, with their wide availability, low cost, and diverse pharmacological activities, have increasingly gained attention. Various natural products, including polyphenols, flavonoids, terpenoids, and alkaloids, can target the RCD pathways involved in ADR-induced cardiotoxicity. Furthermore, these natural products have exhibited excellent properties in preclinical studies or in vitro experiments. This review summarizes the mechanisms of RCD in ADR-induced cardiotoxicity and systematically reviews the natural products targeting these RCD pathways. Finally, we propose future research directions of natural products in this field.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"11 1","pages":"112"},"PeriodicalIF":6.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11928682/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-025-02389-w","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Adriamycin (ADR), as an anti-cancer drug in routine clinical application, is utilized to treat various cancers such as ovarian cancer, hematological malignant tumor, and endometrial carcinoma. However, its serious dose-dependent cardiotoxicity extremely limits its clinical application. Currently, there remains a dearth of therapeutic agents to mitigate ADR-induced cardiotoxicity. Extensive research has demonstrated that ADR can simultaneously trigger various regulated cell death (RCD) pathways, such as apoptosis, autophagy, ferroptosis, necroptosis, and pyroptosis. Therefore, drugs targeting these RCD pathways may represent effective strategies for treating ADR-induced cardiotoxicity. Natural products, with their wide availability, low cost, and diverse pharmacological activities, have increasingly gained attention. Various natural products, including polyphenols, flavonoids, terpenoids, and alkaloids, can target the RCD pathways involved in ADR-induced cardiotoxicity. Furthermore, these natural products have exhibited excellent properties in preclinical studies or in vitro experiments. This review summarizes the mechanisms of RCD in ADR-induced cardiotoxicity and systematically reviews the natural products targeting these RCD pathways. Finally, we propose future research directions of natural products in this field.
期刊介绍:
Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary.
Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.