The artificial intelligence revolution in gastric cancer management: clinical applications.

IF 5.3 2区 医学 Q1 ONCOLOGY Cancer Cell International Pub Date : 2025-03-21 DOI:10.1186/s12935-025-03756-4
Runze Li, Jingfan Li, Yuman Wang, Xiaoyu Liu, Weichao Xu, Runxue Sun, Binqing Xue, Xinqian Zhang, Yikun Ai, Yanru Du, Jianming Jiang
{"title":"The artificial intelligence revolution in gastric cancer management: clinical applications.","authors":"Runze Li, Jingfan Li, Yuman Wang, Xiaoyu Liu, Weichao Xu, Runxue Sun, Binqing Xue, Xinqian Zhang, Yikun Ai, Yanru Du, Jianming Jiang","doi":"10.1186/s12935-025-03756-4","DOIUrl":null,"url":null,"abstract":"<p><p>Nowadays, gastric cancer has become a significant issue in the global cancer burden, and its impact cannot be ignored. The rapid development of artificial intelligence technology is attempting to address this situation, aiming to change the clinical management landscape of gastric cancer fundamentally. In this transformative change, machine learning and deep learning, as two core technologies, play a pivotal role, bringing unprecedented innovations and breakthroughs in the diagnosis, treatment, and prognosis evaluation of gastric cancer. This article comprehensively reviews the latest research status and application of artificial intelligence algorithms in gastric cancer, covering multiple dimensions such as image recognition, pathological analysis, personalized treatment, and prognosis risk assessment. These applications not only significantly improve the sensitivity of gastric cancer risk monitoring, the accuracy of diagnosis, and the precision of survival prognosis but also provide robust data support and a scientific basis for clinical decision-making. The integration of artificial intelligence, from optimizing the diagnosis process and enhancing diagnostic efficiency to promoting the practice of precision medicine, demonstrates its promising prospects for reshaping the treatment model of gastric cancer. Although most of the current AI-based models have not been widely used in clinical practice, with the continuous deepening and expansion of precision medicine, we have reason to believe that a new era of AI-driven gastric cancer care is approaching.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"111"},"PeriodicalIF":5.3000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11929235/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03756-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Nowadays, gastric cancer has become a significant issue in the global cancer burden, and its impact cannot be ignored. The rapid development of artificial intelligence technology is attempting to address this situation, aiming to change the clinical management landscape of gastric cancer fundamentally. In this transformative change, machine learning and deep learning, as two core technologies, play a pivotal role, bringing unprecedented innovations and breakthroughs in the diagnosis, treatment, and prognosis evaluation of gastric cancer. This article comprehensively reviews the latest research status and application of artificial intelligence algorithms in gastric cancer, covering multiple dimensions such as image recognition, pathological analysis, personalized treatment, and prognosis risk assessment. These applications not only significantly improve the sensitivity of gastric cancer risk monitoring, the accuracy of diagnosis, and the precision of survival prognosis but also provide robust data support and a scientific basis for clinical decision-making. The integration of artificial intelligence, from optimizing the diagnosis process and enhancing diagnostic efficiency to promoting the practice of precision medicine, demonstrates its promising prospects for reshaping the treatment model of gastric cancer. Although most of the current AI-based models have not been widely used in clinical practice, with the continuous deepening and expansion of precision medicine, we have reason to believe that a new era of AI-driven gastric cancer care is approaching.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
胃癌治疗中的人工智能革命:临床应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.90
自引率
1.70%
发文量
360
审稿时长
1 months
期刊介绍: Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques. The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors. Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.
期刊最新文献
Mesenchymal stromal cells in bone marrow niche of patients with multiple myeloma: a double-edged sword. Multiomic traits reveal that critical irinotecan-related core regulator FSTL3 promotes CRC progression and affects ferroptosis. The miR-876-5p/SOCS4/STAT3 pathway induced the expression of PD-L1 and suppressed antitumor immune responses. The role of chloride intracellular channel 4 in tumors. Unraveling anoikis in glioblastoma: insights from single-cell sequencing and prognostic modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1