Haikuo Li, Shuozhen Bao, Negin Farzad, Xiaoyu Qin, Anthony A Fung, Di Zhang, Zhiliang Bai, Bo Tao, Rong Fan
{"title":"Spatially resolved genome-wide joint profiling of epigenome and transcriptome with spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq.","authors":"Haikuo Li, Shuozhen Bao, Negin Farzad, Xiaoyu Qin, Anthony A Fung, Di Zhang, Zhiliang Bai, Bo Tao, Rong Fan","doi":"10.1038/s41596-025-01145-9","DOIUrl":null,"url":null,"abstract":"<p><p>The epigenome of a cell is tightly correlated with gene transcription, which controls cell identity and diverse biological activities. Recent advances in spatial technologies have improved our understanding of tissue heterogeneity by analyzing transcriptomics or epigenomics with spatial information preserved, but have been mainly restricted to one molecular layer at a time. Here we present procedures for two spatially resolved sequencing methods, spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq, that co-profile transcriptome and epigenome genome wide. In both methods, transcriptomic readouts are generated through tissue fixation, permeabilization and in situ reverse transcription. In spatial-ATAC-RNA-seq, Tn5 transposase is used to probe accessible chromatin, and in spatial-CUT&Tag-RNA-seq, the tissue is incubated with primary antibodies that target histone modifications, followed by Protein A-fused Tn5-induced tagmentation. Both methods leverage a microfluidic device that delivers two sets of oligonucleotide barcodes to generate a two-dimensional mosaic of tissue pixels at near single-cell resolution. A spatial-ATAC-RNA-seq or spatial-CUT&Tag-RNA-seq library can be generated in 3-5 d, allowing researchers to simultaneously investigate the transcriptomic landscape and epigenomic landscape of an intact tissue section. This protocol is an extension of our previous spatially resolved epigenome sequencing protocol and provides opportunities in multimodal profiling.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-025-01145-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
The epigenome of a cell is tightly correlated with gene transcription, which controls cell identity and diverse biological activities. Recent advances in spatial technologies have improved our understanding of tissue heterogeneity by analyzing transcriptomics or epigenomics with spatial information preserved, but have been mainly restricted to one molecular layer at a time. Here we present procedures for two spatially resolved sequencing methods, spatial-ATAC-RNA-seq and spatial-CUT&Tag-RNA-seq, that co-profile transcriptome and epigenome genome wide. In both methods, transcriptomic readouts are generated through tissue fixation, permeabilization and in situ reverse transcription. In spatial-ATAC-RNA-seq, Tn5 transposase is used to probe accessible chromatin, and in spatial-CUT&Tag-RNA-seq, the tissue is incubated with primary antibodies that target histone modifications, followed by Protein A-fused Tn5-induced tagmentation. Both methods leverage a microfluidic device that delivers two sets of oligonucleotide barcodes to generate a two-dimensional mosaic of tissue pixels at near single-cell resolution. A spatial-ATAC-RNA-seq or spatial-CUT&Tag-RNA-seq library can be generated in 3-5 d, allowing researchers to simultaneously investigate the transcriptomic landscape and epigenomic landscape of an intact tissue section. This protocol is an extension of our previous spatially resolved epigenome sequencing protocol and provides opportunities in multimodal profiling.
期刊介绍:
Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured.
The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.