Integrating multimodal data to understand cortical circuit architecture and function

IF 21.2 1区 医学 Q1 NEUROSCIENCES Nature neuroscience Pub Date : 2025-03-24 DOI:10.1038/s41593-025-01904-7
Anton Arkhipov, Nuno da Costa, Saskia de Vries, Trygve Bakken, Corbett Bennett, Amy Bernard, Jim Berg, Michael Buice, Forrest Collman, Tanya Daigle, Marina Garrett, Nathan Gouwens, Peter A. Groblewski, Julie Harris, Michael Hawrylycz, Rebecca Hodge, Tim Jarsky, Brian Kalmbach, Jerome Lecoq, Brian Lee, Ed Lein, Boaz Levi, Stefan Mihalas, Lydia Ng, Shawn Olsen, Clay Reid, Joshua H. Siegle, Staci Sorensen, Bosiljka Tasic, Carol Thompson, Jonathan T. Ting, Cindy van Velthoven, Shenqin Yao, Zizhen Yao, Christof Koch, Hongkui Zeng
{"title":"Integrating multimodal data to understand cortical circuit architecture and function","authors":"Anton Arkhipov, Nuno da Costa, Saskia de Vries, Trygve Bakken, Corbett Bennett, Amy Bernard, Jim Berg, Michael Buice, Forrest Collman, Tanya Daigle, Marina Garrett, Nathan Gouwens, Peter A. Groblewski, Julie Harris, Michael Hawrylycz, Rebecca Hodge, Tim Jarsky, Brian Kalmbach, Jerome Lecoq, Brian Lee, Ed Lein, Boaz Levi, Stefan Mihalas, Lydia Ng, Shawn Olsen, Clay Reid, Joshua H. Siegle, Staci Sorensen, Bosiljka Tasic, Carol Thompson, Jonathan T. Ting, Cindy van Velthoven, Shenqin Yao, Zizhen Yao, Christof Koch, Hongkui Zeng","doi":"10.1038/s41593-025-01904-7","DOIUrl":null,"url":null,"abstract":"<p>In recent years there has been a tremendous growth in new technologies that allow large-scale investigation of different characteristics of the nervous system at an unprecedented level of detail. There is a growing trend to use combinations of these new techniques to determine direct links between different modalities. In this Perspective, we focus on the mouse visual cortex, as this is one of the model systems in which much progress has been made in the integration of multimodal data to advance understanding. We review several approaches that allow integration of data regarding various properties of cortical cell types, connectivity at the level of brain areas, cell types and individual cells, and functional neural activity in vivo. The increasingly crucial contributions of computation and theory in analyzing and systematically modeling data are also highlighted. Together with open sharing of data, tools and models, integrative approaches are essential tools in modern neuroscience for improving our understanding of the brain architecture, mechanisms and function.</p>","PeriodicalId":19076,"journal":{"name":"Nature neuroscience","volume":"93 1","pages":""},"PeriodicalIF":21.2000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41593-025-01904-7","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years there has been a tremendous growth in new technologies that allow large-scale investigation of different characteristics of the nervous system at an unprecedented level of detail. There is a growing trend to use combinations of these new techniques to determine direct links between different modalities. In this Perspective, we focus on the mouse visual cortex, as this is one of the model systems in which much progress has been made in the integration of multimodal data to advance understanding. We review several approaches that allow integration of data regarding various properties of cortical cell types, connectivity at the level of brain areas, cell types and individual cells, and functional neural activity in vivo. The increasingly crucial contributions of computation and theory in analyzing and systematically modeling data are also highlighted. Together with open sharing of data, tools and models, integrative approaches are essential tools in modern neuroscience for improving our understanding of the brain architecture, mechanisms and function.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature neuroscience
Nature neuroscience 医学-神经科学
CiteScore
38.60
自引率
1.20%
发文量
212
审稿时长
1 months
期刊介绍: Nature Neuroscience, a multidisciplinary journal, publishes papers of the utmost quality and significance across all realms of neuroscience. The editors welcome contributions spanning molecular, cellular, systems, and cognitive neuroscience, along with psychophysics, computational modeling, and nervous system disorders. While no area is off-limits, studies offering fundamental insights into nervous system function receive priority. The journal offers high visibility to both readers and authors, fostering interdisciplinary communication and accessibility to a broad audience. It maintains high standards of copy editing and production, rigorous peer review, rapid publication, and operates independently from academic societies and other vested interests. In addition to primary research, Nature Neuroscience features news and views, reviews, editorials, commentaries, perspectives, book reviews, and correspondence, aiming to serve as the voice of the global neuroscience community.
期刊最新文献
A neuroprotective role of polyunsaturated fatty acids in C9orf72-ALS/FTD Projectome-based characterization of hypothalamic peptidergic neurons in male mice Neural ensembles that encode nocifensive mechanical and heat pain in mouse spinal cord Integrating multimodal data to understand cortical circuit architecture and function Phase of firing does not reflect temporal order in sequence memory of humans and recurrent neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1