Understanding the mode of action of BtEcR/USP-LBD with benzpyrimoxan in combination with high throughput SPR screening and molecular simulation approaches

IF 4.2 1区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Pesticide Biochemistry and Physiology Pub Date : 2025-03-18 DOI:10.1016/j.pestbp.2025.106384
Hongyan Wang , Jialin Cui , Yanjiao Feng , Xinpeng Sun , Qinyan Tan , Li Zhang
{"title":"Understanding the mode of action of BtEcR/USP-LBD with benzpyrimoxan in combination with high throughput SPR screening and molecular simulation approaches","authors":"Hongyan Wang ,&nbsp;Jialin Cui ,&nbsp;Yanjiao Feng ,&nbsp;Xinpeng Sun ,&nbsp;Qinyan Tan ,&nbsp;Li Zhang","doi":"10.1016/j.pestbp.2025.106384","DOIUrl":null,"url":null,"abstract":"<div><div><em>Bemisia tabaci</em> (<em>B. tabaci</em>) is a major agricultural pest that infests over 500 plant species, posing a significant threat to agricultural production due to its polyphagy, adaptability, and ability to transmit plant viruses. Excessive and improper insecticide use has caused resistance to pyrethroids, organophosphates, and neonicotinoids, creating an urgent need for new insecticides with novel structures and mechanisms of action. In this study, we developed an <em>in vitro</em> test platform targeting <em>B. tabaci</em> ecdysteroid receptor (<em>Bt</em>EcR/USP-LBD) using Surface Plasmon Resonance (SPR) and investigated the novel insect growth regulator benzpyrimoxan through SPR, molecular docking, and molecular dynamics (MD) simulations. Benzpyrimoxan specifically bound to <em>Bt</em>EcR/USP-LBD with a kinetic K<sub>D</sub> of 14.19 μM, but its binding strength was lower than that of PonA (K<sub>D</sub> = 0.21 μM). SPR and MD analyses showed that benzpyrimoxan had a slower binding rate and weaker interactions with Cys394 and Asn390 in the ligand binding domain of <em>Bt</em>EcR (<em>Bt</em>EcR-LBD), compared to PonA. Met389, Asn390, Thr393 and Cys394 have been shown to establish a specific hydrogen-bonding network in <em>Bt</em>EcR-LBD, which exhibits significant variations in <em>Hv</em>EcR-LBD. Molecular docking and MD simulations showed that benzpyrimoxan forms hydrogen bonds with this network but requires greater stability to enhance binding. This study identifies the potential mode of action of benzpyrimoxan and offers a strategy for discovering novel ecdysteroid analogues for controlling <em>B. tabaci</em>.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"210 ","pages":"Article 106384"},"PeriodicalIF":4.2000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pesticide Biochemistry and Physiology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0048357525000975","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Bemisia tabaci (B. tabaci) is a major agricultural pest that infests over 500 plant species, posing a significant threat to agricultural production due to its polyphagy, adaptability, and ability to transmit plant viruses. Excessive and improper insecticide use has caused resistance to pyrethroids, organophosphates, and neonicotinoids, creating an urgent need for new insecticides with novel structures and mechanisms of action. In this study, we developed an in vitro test platform targeting B. tabaci ecdysteroid receptor (BtEcR/USP-LBD) using Surface Plasmon Resonance (SPR) and investigated the novel insect growth regulator benzpyrimoxan through SPR, molecular docking, and molecular dynamics (MD) simulations. Benzpyrimoxan specifically bound to BtEcR/USP-LBD with a kinetic KD of 14.19 μM, but its binding strength was lower than that of PonA (KD = 0.21 μM). SPR and MD analyses showed that benzpyrimoxan had a slower binding rate and weaker interactions with Cys394 and Asn390 in the ligand binding domain of BtEcR (BtEcR-LBD), compared to PonA. Met389, Asn390, Thr393 and Cys394 have been shown to establish a specific hydrogen-bonding network in BtEcR-LBD, which exhibits significant variations in HvEcR-LBD. Molecular docking and MD simulations showed that benzpyrimoxan forms hydrogen bonds with this network but requires greater stability to enhance binding. This study identifies the potential mode of action of benzpyrimoxan and offers a strategy for discovering novel ecdysteroid analogues for controlling B. tabaci.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
8.50%
发文量
238
审稿时长
4.2 months
期刊介绍: Pesticide Biochemistry and Physiology publishes original scientific articles pertaining to the mode of action of plant protection agents such as insecticides, fungicides, herbicides, and similar compounds, including nonlethal pest control agents, biosynthesis of pheromones, hormones, and plant resistance agents. Manuscripts may include a biochemical, physiological, or molecular study for an understanding of comparative toxicology or selective toxicity of both target and nontarget organisms. Particular interest will be given to studies on the molecular biology of pest control, toxicology, and pesticide resistance. Research Areas Emphasized Include the Biochemistry and Physiology of: • Comparative toxicity • Mode of action • Pathophysiology • Plant growth regulators • Resistance • Other effects of pesticides on both parasites and hosts.
期刊最新文献
Organic amendments restore soil biological properties under pesticides application Bombyx mori nuclear polyhedrosis virus infection regulated by host glycosphingolipids Rapid spread of Amitraz resistance linked to a unique T115N mutation in the octopamine receptor of Varroa mites in Korea Functional analysis of Ophraella communa Lesage OcomOBP11 in recognition of Ambrosia artemisiifolia L. volatiles Impacts of short-term ivermectin exposures on fruit flies
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1