The Interface of Gene Editing with Regenerative Medicine

IF 10.1 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY Engineering Pub Date : 2025-03-01 DOI:10.1016/j.eng.2024.10.019
Veronica E. Farag , Elsie A. Devey , Kam W. Leong
{"title":"The Interface of Gene Editing with Regenerative Medicine","authors":"Veronica E. Farag ,&nbsp;Elsie A. Devey ,&nbsp;Kam W. Leong","doi":"10.1016/j.eng.2024.10.019","DOIUrl":null,"url":null,"abstract":"<div><div>The potential of regenerative medicine in the clinical space is vast, given its ability to repair and replace damaged tissues, restore lost functions due to age or disease, and transform personalized therapy. Traditional regenerative medicine and tissue engineering strategies have created specialized tissues using progenitor cells and various biological stimuli. To date, there are many US Food and Drug Administration (FDA)-approved regenerative medicine therapies, such as those for wound healing and orthopedic injuries. Nonetheless, these therapies face challenges, including off-target effects, a lack of precision, and failure to target the disease or injury at its origin. In search of novel, precise, and efficient alternatives, the regenerative medicine landscape is shifting towards genome engineering technologies, particularly gene editing. Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing systems enable precise knock-ins, knockouts, transcriptional activation and repression, as well as specific base conversions. This advancement has allowed researchers to treat genetic and degenerative diseases, control cell fate for highly regulated tissue repair, and enhance tissue functions. In this review, we explore the progress and future prospects of CRISPR technologies in regenerative medicine, focusing on how gene editing has led to advanced therapeutic applications and served as a versatile research tool for understanding tissue development and disease progression.</div></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"46 ","pages":"Pages 73-100"},"PeriodicalIF":10.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095809924006726","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The potential of regenerative medicine in the clinical space is vast, given its ability to repair and replace damaged tissues, restore lost functions due to age or disease, and transform personalized therapy. Traditional regenerative medicine and tissue engineering strategies have created specialized tissues using progenitor cells and various biological stimuli. To date, there are many US Food and Drug Administration (FDA)-approved regenerative medicine therapies, such as those for wound healing and orthopedic injuries. Nonetheless, these therapies face challenges, including off-target effects, a lack of precision, and failure to target the disease or injury at its origin. In search of novel, precise, and efficient alternatives, the regenerative medicine landscape is shifting towards genome engineering technologies, particularly gene editing. Clustered regularly interspaced short palindromic repeats (CRISPR)-based gene editing systems enable precise knock-ins, knockouts, transcriptional activation and repression, as well as specific base conversions. This advancement has allowed researchers to treat genetic and degenerative diseases, control cell fate for highly regulated tissue repair, and enhance tissue functions. In this review, we explore the progress and future prospects of CRISPR technologies in regenerative medicine, focusing on how gene editing has led to advanced therapeutic applications and served as a versatile research tool for understanding tissue development and disease progression.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
[Radiative Properties of Cirrus Clouds Based on Hexagonal and Spherical Ice Crystals Models].
IF 0.7 4区 化学光谱学与光谱分析Pub Date : 2015-05-01 DOI:
Husltu, Yu-hai Bao, Jian Xu, Song Qing, Gang Bao
[Radiative Properties of Cirrus Clouds Based on Hexagonal and Spherical Ice Crystals Models].
IF 0.7 4区 化学光谱学与光谱分析Pub Date : 2015-05-01 DOI: 10.3964/J.ISSN.1000-0593(2015)05-1165-04
Husltu, Yuilong Bao, Jian Xu, Song Qing, G. Bao
Optical Model of a Cirrus Cloud Consisting of Hollow Ice Hexagonal Columns for Lidar Applications
IF 0.9 Atmospheric and Oceanic OpticsPub Date : 2025-03-04 DOI: 10.1134/S102485602470115X
A. V. Konoshonkin, N. V. Kustova, V. A. Shishko, D. N. Timofeev, I. V. Tkachev, E. Bakute, A. E. Babinovich, X. Zhu, Z. Wang
来源期刊
Engineering
Engineering Environmental Science-Environmental Engineering
自引率
1.60%
发文量
335
审稿时长
35 days
期刊介绍: Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.
期刊最新文献
Lycium barbarum L.-Derived miR162a Functions on Osteoporosis Through Directly Promoting Osteoblast Formation Ultrasound-Enabled Nanomedicine for Tumor Theranostics Minimally Invasive Implantable Biomaterials for Bone Reconstruction Microfluidic Barcode Biochips for High-Throughput Real-Time Biomolecule and Single-Cell Screening Early Opportunities for Onshore and Offshore CCUS Deployment in the Chinese Cement Industry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1