{"title":"Supervised factor modeling for high-dimensional linear time series","authors":"Feiqing Huang , Kexin Lu , Yao Zheng , Guodong Li","doi":"10.1016/j.jeconom.2025.105995","DOIUrl":null,"url":null,"abstract":"<div><div>Motivated by Tucker tensor decomposition, this paper imposes low-rank structures to the column and row spaces of coefficient matrices in a multivariate infinite-order vector autoregression (VAR), which leads to a supervised factor model with two factor modelings being conducted to responses and predictors simultaneously. Interestingly, the stationarity condition implies an intrinsic weak group sparsity mechanism of infinite-order VAR, and hence a rank-constrained group Lasso estimation is considered for high-dimensional linear time series. Its non-asymptotic properties are discussed by balancing the estimation, approximation and truncation errors. Moreover, an alternating gradient descent algorithm with hard-thresholding is designed to search for high-dimensional estimates, and its theoretical justifications, including statistical and convergence analysis, are also provided. Theoretical and computational properties of the proposed methodology are verified by simulation experiments, and the advantages over existing methods are demonstrated by analyzing US quarterly macroeconomic variables.</div></div>","PeriodicalId":15629,"journal":{"name":"Journal of Econometrics","volume":"249 ","pages":"Article 105995"},"PeriodicalIF":9.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Econometrics","FirstCategoryId":"96","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0304407625000491","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0
Abstract
Motivated by Tucker tensor decomposition, this paper imposes low-rank structures to the column and row spaces of coefficient matrices in a multivariate infinite-order vector autoregression (VAR), which leads to a supervised factor model with two factor modelings being conducted to responses and predictors simultaneously. Interestingly, the stationarity condition implies an intrinsic weak group sparsity mechanism of infinite-order VAR, and hence a rank-constrained group Lasso estimation is considered for high-dimensional linear time series. Its non-asymptotic properties are discussed by balancing the estimation, approximation and truncation errors. Moreover, an alternating gradient descent algorithm with hard-thresholding is designed to search for high-dimensional estimates, and its theoretical justifications, including statistical and convergence analysis, are also provided. Theoretical and computational properties of the proposed methodology are verified by simulation experiments, and the advantages over existing methods are demonstrated by analyzing US quarterly macroeconomic variables.
期刊介绍:
The Journal of Econometrics serves as an outlet for important, high quality, new research in both theoretical and applied econometrics. The scope of the Journal includes papers dealing with identification, estimation, testing, decision, and prediction issues encountered in economic research. Classical Bayesian statistics, and machine learning methods, are decidedly within the range of the Journal''s interests. The Annals of Econometrics is a supplement to the Journal of Econometrics.