Elucidation of the mechanism by which the foliar application of triacontanol enhances Cd enrichment in Tagetes patula L. through morphological, metabolomic, and transcriptomic analyses.

IF 4.3 3区 环境科学与生态学 Q1 CHEMISTRY, ANALYTICAL Environmental Science: Processes & Impacts Pub Date : 2025-03-24 DOI:10.1039/d4em00736k
Luqi Mi, Yetong Liu, Qingqing Huang, Lijie Zhao, Xu Qin, Yuebing Sun, Boyan Li
{"title":"Elucidation of the mechanism by which the foliar application of triacontanol enhances Cd enrichment in <i>Tagetes patula</i> L. through morphological, metabolomic, and transcriptomic analyses.","authors":"Luqi Mi, Yetong Liu, Qingqing Huang, Lijie Zhao, Xu Qin, Yuebing Sun, Boyan Li","doi":"10.1039/d4em00736k","DOIUrl":null,"url":null,"abstract":"<p><p>Phytoremediation is an effective technology for removing heavy metal cadmium (Cd) from soil without harming the soil; however, it is limited by its long remediation time and low efficiency. In this study, a plant growth regulator (PGR), triacontanol, was sprayed on the leaves of the hyperaccumulator <i>Tagetes patula</i> L. at different growth stages to enhance the accumulation of soil Cd, thereby ultimately enhancing the efficiency of phytoremediation. Results showed that leaves were the main site of Cd accumulation in <i>T. patula</i>, and foliar application of triacontanol increased the leaf biomass and Cd content, with maximum values of 14.69% and 15.44%, respectively. Furthermore, the Cd removal rate in the soil increased to 11.53%. The effect of a single application of triacontanol on Cd accumulation was better than that of two applications, and the bloom period was found to be the best application stage. The proportion of Cd in the cell walls increased, enhancing Cd fixation ability. The photosynthetic efficiency and antioxidant capacity of <i>T. patula</i> improved significantly. In the roots, metabolomic and transcriptomic analyses indicated that triacontanol promoted the metabolism of low-molecular-weight organic acids, leading to an increase in the available and exchangeable Cd in soil, with maximum values of 14.72% and 2.29%, respectively. The upregulation of Cd transport-related genes and pathways in the roots strengthened their ability to absorb Cd and resist Cd stress. These findings systematically elucidated the molecular mechanism of triacontanol-enhanced Cd accumulation in <i>T. patula</i> and provide technical support for its wide application.</p>","PeriodicalId":74,"journal":{"name":"Environmental Science: Processes & Impacts","volume":" ","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Science: Processes & Impacts","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1039/d4em00736k","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Phytoremediation is an effective technology for removing heavy metal cadmium (Cd) from soil without harming the soil; however, it is limited by its long remediation time and low efficiency. In this study, a plant growth regulator (PGR), triacontanol, was sprayed on the leaves of the hyperaccumulator Tagetes patula L. at different growth stages to enhance the accumulation of soil Cd, thereby ultimately enhancing the efficiency of phytoremediation. Results showed that leaves were the main site of Cd accumulation in T. patula, and foliar application of triacontanol increased the leaf biomass and Cd content, with maximum values of 14.69% and 15.44%, respectively. Furthermore, the Cd removal rate in the soil increased to 11.53%. The effect of a single application of triacontanol on Cd accumulation was better than that of two applications, and the bloom period was found to be the best application stage. The proportion of Cd in the cell walls increased, enhancing Cd fixation ability. The photosynthetic efficiency and antioxidant capacity of T. patula improved significantly. In the roots, metabolomic and transcriptomic analyses indicated that triacontanol promoted the metabolism of low-molecular-weight organic acids, leading to an increase in the available and exchangeable Cd in soil, with maximum values of 14.72% and 2.29%, respectively. The upregulation of Cd transport-related genes and pathways in the roots strengthened their ability to absorb Cd and resist Cd stress. These findings systematically elucidated the molecular mechanism of triacontanol-enhanced Cd accumulation in T. patula and provide technical support for its wide application.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Environmental Science: Processes & Impacts
Environmental Science: Processes & Impacts CHEMISTRY, ANALYTICAL-ENVIRONMENTAL SCIENCES
CiteScore
9.50
自引率
3.60%
发文量
202
审稿时长
1 months
期刊介绍: Environmental Science: Processes & Impacts publishes high quality papers in all areas of the environmental chemical sciences, including chemistry of the air, water, soil and sediment. We welcome studies on the environmental fate and effects of anthropogenic and naturally occurring contaminants, both chemical and microbiological, as well as related natural element cycling processes.
期刊最新文献
Predicting aquatic toxicity of anionic hydrocarbon and perfluorinated surfactants using membrane-water partition coefficients from coarse-grained simulations. Contaminant bioaccessibility in abandoned mine tailings in Namibia changes along a climatic gradient. Fungi as an emerging waterborne health concern: impact of treated wastewater discharge versus aerosolization. Per- and poly-fluoroalkyl substances (PFAS) contamination of surface waters by historic landfills via groundwater plumes: ecosystem exposure and downstream mass loading. Associations of individual and mixtures of organophosphate pesticides with the risk of osteoporosis in adult population.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1