{"title":"NSD3: A Promising Target for Cancer Therapy","authors":"Ting Huang, Bowen Zhang, Yifan Yang, Qiong Lin, Genbao Shao","doi":"10.1002/cbf.70071","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Over the past 24 years, nuclear receptor-binding SET domain protein 3 (NSD3) has emerged as a critical regulator of cellular physiological processes. As a histone methyltransferase targeting H3K36, NSD3 catalyzes the addition of methyl groups to histone residues, a process that profoundly influences genome imprinting, gene transcription, and genome stability, thereby modulating gene expression. Amplification, mutations, and fusion events involving the <i>NSD3</i> gene have been strongly linked to the pathogenesis of various cancers, highlighting its role as a key regulator of tumorigenesis. This review provides an overview of the general structure and biological functions of NSD3, followed by an analysis of NSD3's role in relation to the hallmarks of cancer as described by Hanahan and Weinberg. Targeting NSD3 has become a major focus of research, with significant efforts directed toward the development and clinical application of NSD3 inhibitors. However, challenges related to specificity and selectivity have hindered progress in this area. Despite these obstacles, the successful development and clinical advancement of other histone methyltransferase inhibitors have provided encouragement to researchers, driving the active pursuit of NSD3-targeted therapies for cancer treatment.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70071","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Over the past 24 years, nuclear receptor-binding SET domain protein 3 (NSD3) has emerged as a critical regulator of cellular physiological processes. As a histone methyltransferase targeting H3K36, NSD3 catalyzes the addition of methyl groups to histone residues, a process that profoundly influences genome imprinting, gene transcription, and genome stability, thereby modulating gene expression. Amplification, mutations, and fusion events involving the NSD3 gene have been strongly linked to the pathogenesis of various cancers, highlighting its role as a key regulator of tumorigenesis. This review provides an overview of the general structure and biological functions of NSD3, followed by an analysis of NSD3's role in relation to the hallmarks of cancer as described by Hanahan and Weinberg. Targeting NSD3 has become a major focus of research, with significant efforts directed toward the development and clinical application of NSD3 inhibitors. However, challenges related to specificity and selectivity have hindered progress in this area. Despite these obstacles, the successful development and clinical advancement of other histone methyltransferase inhibitors have provided encouragement to researchers, driving the active pursuit of NSD3-targeted therapies for cancer treatment.
期刊介绍:
Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease.
The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.