NSD3: A Promising Target for Cancer Therapy

IF 2.8 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Cell Biochemistry and Function Pub Date : 2025-03-26 DOI:10.1002/cbf.70071
Ting Huang, Bowen Zhang, Yifan Yang, Qiong Lin, Genbao Shao
{"title":"NSD3: A Promising Target for Cancer Therapy","authors":"Ting Huang,&nbsp;Bowen Zhang,&nbsp;Yifan Yang,&nbsp;Qiong Lin,&nbsp;Genbao Shao","doi":"10.1002/cbf.70071","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Over the past 24 years, nuclear receptor-binding SET domain protein 3 (NSD3) has emerged as a critical regulator of cellular physiological processes. As a histone methyltransferase targeting H3K36, NSD3 catalyzes the addition of methyl groups to histone residues, a process that profoundly influences genome imprinting, gene transcription, and genome stability, thereby modulating gene expression. Amplification, mutations, and fusion events involving the <i>NSD3</i> gene have been strongly linked to the pathogenesis of various cancers, highlighting its role as a key regulator of tumorigenesis. This review provides an overview of the general structure and biological functions of NSD3, followed by an analysis of NSD3's role in relation to the hallmarks of cancer as described by Hanahan and Weinberg. Targeting NSD3 has become a major focus of research, with significant efforts directed toward the development and clinical application of NSD3 inhibitors. However, challenges related to specificity and selectivity have hindered progress in this area. Despite these obstacles, the successful development and clinical advancement of other histone methyltransferase inhibitors have provided encouragement to researchers, driving the active pursuit of NSD3-targeted therapies for cancer treatment.</p></div>","PeriodicalId":9669,"journal":{"name":"Cell Biochemistry and Function","volume":"43 4","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Biochemistry and Function","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cbf.70071","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Over the past 24 years, nuclear receptor-binding SET domain protein 3 (NSD3) has emerged as a critical regulator of cellular physiological processes. As a histone methyltransferase targeting H3K36, NSD3 catalyzes the addition of methyl groups to histone residues, a process that profoundly influences genome imprinting, gene transcription, and genome stability, thereby modulating gene expression. Amplification, mutations, and fusion events involving the NSD3 gene have been strongly linked to the pathogenesis of various cancers, highlighting its role as a key regulator of tumorigenesis. This review provides an overview of the general structure and biological functions of NSD3, followed by an analysis of NSD3's role in relation to the hallmarks of cancer as described by Hanahan and Weinberg. Targeting NSD3 has become a major focus of research, with significant efforts directed toward the development and clinical application of NSD3 inhibitors. However, challenges related to specificity and selectivity have hindered progress in this area. Despite these obstacles, the successful development and clinical advancement of other histone methyltransferase inhibitors have provided encouragement to researchers, driving the active pursuit of NSD3-targeted therapies for cancer treatment.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
相关文献
[G3BP: a promising target for cancer therapy].
IF 0 药学学报Pub Date : 2010-08-01 DOI:
Hao Zhang, Rong-guang Shao
NEDD4: a promising target for cancer therapy.
IF 3 4区 医学Current cancer drug targetsPub Date : 2014-01-01 DOI: 10.2174/1568009614666140725092430
Xiantao Ye, Lixia Wang, Bingxue Shang, Zhiwei Wang, Wenyi Wei
PLK4: a promising target for cancer therapy.
IF 2.7 3区 医学Journal of Cancer Research and Clinical OncologyPub Date : 2019-10-01 DOI: 10.1007/s00432-019-02994-0
Yi Zhao, Xin Wang
来源期刊
Cell Biochemistry and Function
Cell Biochemistry and Function 生物-生化与分子生物学
CiteScore
6.20
自引率
0.00%
发文量
93
审稿时长
6-12 weeks
期刊介绍: Cell Biochemistry and Function publishes original research articles and reviews on the mechanisms whereby molecular and biochemical processes control cellular activity with a particular emphasis on the integration of molecular and cell biology, biochemistry and physiology in the regulation of tissue function in health and disease. The primary remit of the journal is on mammalian biology both in vivo and in vitro but studies of cells in situ are especially encouraged. Observational and pathological studies will be considered providing they include a rational discussion of the possible molecular and biochemical mechanisms behind them and the immediate impact of these observations to our understanding of mammalian biology.
期刊最新文献
Issue Information NSD3: A Promising Target for Cancer Therapy Estrogen G-Protein Coupled Receptor Antagonist G15 Promotes Tau Clearance in 2D and 3D Tauopathy Models Characterizing the Role of Endocannabinoid Receptor Cnr1 in Mouse Ovarian Granulosa Cells E7HPV16 Oncogene and 17beta-Estradiol Stress, Promotes Oncogenic microRNA Expression Patterns, Cell Proliferation and Cervical Intraepithelial Neoplasia 1
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1