Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS

IF 15.8 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY ACS Nano Pub Date : 2022-09-09 DOI:10.1021/acsnano.2c05150
Renjie Niu, Fei Gao, Dou Wang, Dan Zhu, Shao Su, Shufen Chen, Lihui YuWen, Chunhai Fan, Lianhui Wang and Jie Chao*, 
{"title":"Pattern Recognition Directed Assembly of Plasmonic Gap Nanostructures for Single-Molecule SERS","authors":"Renjie Niu,&nbsp;Fei Gao,&nbsp;Dou Wang,&nbsp;Dan Zhu,&nbsp;Shao Su,&nbsp;Shufen Chen,&nbsp;Lihui YuWen,&nbsp;Chunhai Fan,&nbsp;Lianhui Wang and Jie Chao*,&nbsp;","doi":"10.1021/acsnano.2c05150","DOIUrl":null,"url":null,"abstract":"<p >Gold nanocubes (AuNCs) with tunable localized surface plasmon resonance properties are good candidates for plasmonic gap nanostructures (PGNs) with hot spots (areas with intense electric field localization). Nevertheless, it remains challenging to create shape-controllable nanogaps between AuNCs. Herein, we report a DNA origami directed pattern recognition strategy to assemble AuNCs into PGNs. By tuning the position and number of capture strands on the DNA origami template, different geometrical configurations of PGNs with nanometer-precise and shape-controllable gaps are created. The localized field enhancement in these gaps can generate hot spots that are in accordance with finite difference time domain simulations. Benefiting from the single Raman probe molecule precisely anchored at these nanogaps, the dramatic enhanced electromagnetic fields localized in hot spots arouse stronger single-molecule SERS (SM-SERS) signals. This method can be utilized in the design of ultrahigh-sensitivity photonic devices with tailored optical properties and SERS-based applications.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"16 9","pages":"14622–14631"},"PeriodicalIF":15.8000,"publicationDate":"2022-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.2c05150","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 21

Abstract

Gold nanocubes (AuNCs) with tunable localized surface plasmon resonance properties are good candidates for plasmonic gap nanostructures (PGNs) with hot spots (areas with intense electric field localization). Nevertheless, it remains challenging to create shape-controllable nanogaps between AuNCs. Herein, we report a DNA origami directed pattern recognition strategy to assemble AuNCs into PGNs. By tuning the position and number of capture strands on the DNA origami template, different geometrical configurations of PGNs with nanometer-precise and shape-controllable gaps are created. The localized field enhancement in these gaps can generate hot spots that are in accordance with finite difference time domain simulations. Benefiting from the single Raman probe molecule precisely anchored at these nanogaps, the dramatic enhanced electromagnetic fields localized in hot spots arouse stronger single-molecule SERS (SM-SERS) signals. This method can be utilized in the design of ultrahigh-sensitivity photonic devices with tailored optical properties and SERS-based applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模式识别定向组装等离子体间隙纳米结构的单分子SERS
具有可调谐局部化表面等离子体共振特性的金纳米立方体(AuNCs)是具有热点(强电场局部化区域)的等离子体间隙纳米结构(PGNs)的良好候选材料。然而,在aunc之间制造形状可控的纳米间隙仍然具有挑战性。在此,我们报告了一种DNA折纸定向模式识别策略,将aunc组装成pgn。通过调整DNA折纸模板上捕获链的位置和数量,可以创建具有纳米精度和形状可控间隙的不同几何构型的PGNs。这些间隙中的局部场增强可以产生符合时域有限差分模拟的热点。得益于精确锚定在这些纳米间隙上的单个拉曼探针分子,定位于热点的显著增强的电磁场激发了更强的单分子SERS (SM-SERS)信号。该方法可用于设计具有定制光学特性的超高灵敏度光子器件和基于sers的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
期刊最新文献
Coupling Bifunctional Scaffolds with Slow Photon Effect for Synergistically Enhanced Photoassisted Lithium–Sulfur Battery Properties Photosensitive Hybrid γδ-T Exosomes for Targeted Cancer Photoimmunotherapy Correction to “Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides” Hierarchical Nanocellulose Photonic Design for Synergistic Colored Radiative Cooling Synthesis and Self-Assembly of Monodisperse Graphene Nanoribbons: Access to Submicron Architectures with Long-Range Order and Uniform Orientation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1