{"title":"Photosensitive Hybrid γδ-T Exosomes for Targeted Cancer Photoimmunotherapy","authors":"Yifan Gao, Jinzhao Liu, Meicen Wu, Yanmei Zhang, Manni Wang, Qingyang Lyu, Wenyue Zhang, Yang Zhou, Yin Celeste Cheuk, Xiwei Wang, Yinping Liu, Weiping Wang, Wenwei Tu","doi":"10.1021/acsnano.4c11024","DOIUrl":null,"url":null,"abstract":"Melanoma is the most aggressive type of skin cancers. Traditional chemotherapy and radiotherapy have limited effectiveness and can lead to systemic side effects. Photodynamic therapy (PDT) is a photoresponsive cancer therapy based on photosensitizers to generate reactive oxygen species (ROS) to eradicate tumor cells. Our previous study showed that exosomes derived from human γδ-T cells (γδ-T exosomes) could control Epstein–Barr virus-associated tumors. Here, we combined γδ-T exosomes and PDT for targeted photoimmunotherapy by membrane fusion of γδ-T exosomes and Chlorin e6 (Ce6)-loaded liposomes. The functional surface proteins, such as CCR5 and PD-1, on the hybrid exosomes mediated the specific binding of hybrid exosomes toward melanoma tissues. The cytolytic molecules, such as granzyme A, granzyme B, perforin, and granulysin from γδ-T exosomes, induced specific apoptosis of cancer cells without harming normal cells. In response to light irradiation, ROS generation inside melanoma cells synergized with cytolytic molecules to induce apoptosis and promote immunogenic cancer cell death (ICD). The subsequently released damage-associated molecular patterns (DAMPs) could stimulate human dendritic cell maturation and induce melanoma antigen-specific CD4<sup>+</sup> and CD8<sup>+</sup> T-cell responses, thereby enhancing antitumor immunity. This study provides a promising strategy by combining γδ-T exosomes and PDT for photoimmunotherapy, thereby expanding the clinical applications of γδ-T exosome therapy for cancer patients.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"49 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c11024","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Melanoma is the most aggressive type of skin cancers. Traditional chemotherapy and radiotherapy have limited effectiveness and can lead to systemic side effects. Photodynamic therapy (PDT) is a photoresponsive cancer therapy based on photosensitizers to generate reactive oxygen species (ROS) to eradicate tumor cells. Our previous study showed that exosomes derived from human γδ-T cells (γδ-T exosomes) could control Epstein–Barr virus-associated tumors. Here, we combined γδ-T exosomes and PDT for targeted photoimmunotherapy by membrane fusion of γδ-T exosomes and Chlorin e6 (Ce6)-loaded liposomes. The functional surface proteins, such as CCR5 and PD-1, on the hybrid exosomes mediated the specific binding of hybrid exosomes toward melanoma tissues. The cytolytic molecules, such as granzyme A, granzyme B, perforin, and granulysin from γδ-T exosomes, induced specific apoptosis of cancer cells without harming normal cells. In response to light irradiation, ROS generation inside melanoma cells synergized with cytolytic molecules to induce apoptosis and promote immunogenic cancer cell death (ICD). The subsequently released damage-associated molecular patterns (DAMPs) could stimulate human dendritic cell maturation and induce melanoma antigen-specific CD4+ and CD8+ T-cell responses, thereby enhancing antitumor immunity. This study provides a promising strategy by combining γδ-T exosomes and PDT for photoimmunotherapy, thereby expanding the clinical applications of γδ-T exosome therapy for cancer patients.
期刊介绍:
ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.