{"title":"Soil to earthworm bioaccumulation of polyhalogenated carbazoles and related compounds: Lab and field tests","authors":"Qi Su , Chaojie Li , Minfeng Dong , Xincheng Liu , Dan Zhong , Shanshan Zhou","doi":"10.1016/j.envpol.2022.120475","DOIUrl":null,"url":null,"abstract":"<div><p>Polyhalogenated carbazoles (PHCZs) are an emerging group of organic contaminants that have attracted attention because of their ubiquity, resistance to biodegradation, and toxicities. However, studies on the bioaccumulation of PHCZs in terrestrial organisms are limited. In the present study, bioaccumulation of 11 PHCZs and two related compounds, carbazole (CZ) and benzocarbazole (BZCZ), from soil to earthworms was investigated by paired soil-earthworm samples from Hangzhou, China and a laboratory bioaccumulation test. The sum of the concentrations of the 11 polyhalogenated carbazoles (Σ<sub>11</sub>PHCZs), CZ and BZCZ in soils from Hangzhou were 1.78–67.27 ng/g dry weight, 1.11–57.90 ng/g dry weight, and 22.87–171.98 ng/g dry weight, respectively, while those in the earthworms were 179.49–892.90 ng/g lipid weight, 42.90–2140.42 ng/g lipid weight, and not detectable-2514.76 ng/g lipid weight, respectively. The average in situ biota-to-soil accumulation factors (BSAFs) ranged from 0.38 to 13.23, comparable to those in some reports for polychlorinated biphenyls and polybrominated diphenlethers. Site-independence of BSAFs and no correlation between log <em>C</em><sub><em>worm</em></sub> and log <em>C</em><sub><em>soil</em></sub> together support the hypothesis that distribution of PHCZs between soil and worms in Hangzhou didn't reach equilibrium. In the laboratory test, the accumulation trends of CZ, BZCZ, 3-bromocarbazole, 3,6-dichlorocarbazole, and 2,7-dibromocarbazole well fit to the first-order kinetics, with <em>r</em><sup><em>2</em></sup> ranging from 0.796 to 0.997. The BSAFs under two exposure concentration groups at steady-state conditions were 38.8–56.0 and 2.1–4.4, respectively, suggesting the capacity of bioaccumulation for these compounds. Enhancement of concentrations and resident time of the chemicals in soil would reduce the BSAF values, which may be related to the change of uptake process of the compound or redistribution of compound between soil and earthworm. A comparison of the theoretical steady-state concentrations with the nonlinear regression-based concentrations indicates that increasing the exposure time beyond 28 days is beneficial for studying the bioaccumulation of PHCZs.</p></div>","PeriodicalId":311,"journal":{"name":"Environmental Pollution","volume":"316 ","pages":"Article 120475"},"PeriodicalIF":7.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmental Pollution","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S026974912201689X","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 3
Abstract
Polyhalogenated carbazoles (PHCZs) are an emerging group of organic contaminants that have attracted attention because of their ubiquity, resistance to biodegradation, and toxicities. However, studies on the bioaccumulation of PHCZs in terrestrial organisms are limited. In the present study, bioaccumulation of 11 PHCZs and two related compounds, carbazole (CZ) and benzocarbazole (BZCZ), from soil to earthworms was investigated by paired soil-earthworm samples from Hangzhou, China and a laboratory bioaccumulation test. The sum of the concentrations of the 11 polyhalogenated carbazoles (Σ11PHCZs), CZ and BZCZ in soils from Hangzhou were 1.78–67.27 ng/g dry weight, 1.11–57.90 ng/g dry weight, and 22.87–171.98 ng/g dry weight, respectively, while those in the earthworms were 179.49–892.90 ng/g lipid weight, 42.90–2140.42 ng/g lipid weight, and not detectable-2514.76 ng/g lipid weight, respectively. The average in situ biota-to-soil accumulation factors (BSAFs) ranged from 0.38 to 13.23, comparable to those in some reports for polychlorinated biphenyls and polybrominated diphenlethers. Site-independence of BSAFs and no correlation between log Cworm and log Csoil together support the hypothesis that distribution of PHCZs between soil and worms in Hangzhou didn't reach equilibrium. In the laboratory test, the accumulation trends of CZ, BZCZ, 3-bromocarbazole, 3,6-dichlorocarbazole, and 2,7-dibromocarbazole well fit to the first-order kinetics, with r2 ranging from 0.796 to 0.997. The BSAFs under two exposure concentration groups at steady-state conditions were 38.8–56.0 and 2.1–4.4, respectively, suggesting the capacity of bioaccumulation for these compounds. Enhancement of concentrations and resident time of the chemicals in soil would reduce the BSAF values, which may be related to the change of uptake process of the compound or redistribution of compound between soil and earthworm. A comparison of the theoretical steady-state concentrations with the nonlinear regression-based concentrations indicates that increasing the exposure time beyond 28 days is beneficial for studying the bioaccumulation of PHCZs.
期刊介绍:
Environmental Pollution is an international peer-reviewed journal that publishes high-quality research papers and review articles covering all aspects of environmental pollution and its impacts on ecosystems and human health.
Subject areas include, but are not limited to:
• Sources and occurrences of pollutants that are clearly defined and measured in environmental compartments, food and food-related items, and human bodies;
• Interlinks between contaminant exposure and biological, ecological, and human health effects, including those of climate change;
• Contaminants of emerging concerns (including but not limited to antibiotic resistant microorganisms or genes, microplastics/nanoplastics, electronic wastes, light, and noise) and/or their biological, ecological, or human health effects;
• Laboratory and field studies on the remediation/mitigation of environmental pollution via new techniques and with clear links to biological, ecological, or human health effects;
• Modeling of pollution processes, patterns, or trends that is of clear environmental and/or human health interest;
• New techniques that measure and examine environmental occurrences, transport, behavior, and effects of pollutants within the environment or the laboratory, provided that they can be clearly used to address problems within regional or global environmental compartments.