A study on the load-dependent enthalpy of adsorption and interactions in adsorption of C5 and C6 hydrocarbons on zeolites 13X and ZSM-5 and an activated carbon
Christian Bläker , Christoph Pasel , Michael Luckas , Frieder Dreisbach , Dieter Bathen
{"title":"A study on the load-dependent enthalpy of adsorption and interactions in adsorption of C5 and C6 hydrocarbons on zeolites 13X and ZSM-5 and an activated carbon","authors":"Christian Bläker , Christoph Pasel , Michael Luckas , Frieder Dreisbach , Dieter Bathen","doi":"10.1016/j.micromeso.2020.110205","DOIUrl":null,"url":null,"abstract":"<div><p>In a systematic experimental work, the adsorption of linear, branched and cyclic C5 and C6 hydrocarbons on the zeolites<span><span> 13X-APG and HiSiv 3000 and the activated carbon Norit R1 Extra is studied. By simultaneous measurement of adsorption capacities and load-dependent enthalpies of adsorption using a self-developed sensor gas calorimeter a deep knowledge about the energetic strength of interactions in adsorption is gained. A special focus is laid on the discussion of the influence of pore geometry and surface chemistry of the adsorbents as well as the molecular structure and binding types of the adsorptives used. Depending on the pore geometry and the surface chemistry of the adsorbents, the load-dependent enthalpies of adsorption show different shapes. While the enthalpies of adsorption on the </span>Faujasite zeolite increase with loading, they are independent of loading on the ZSM-5 zeolite and decrease on the activated carbon. On both zeolites the cyclic and branched adsorptive molecules show lower enthalpies of adsorption compared to the linear molecules due to a less favorable arrangement on the surface. On activated carbon, the enthalpies of adsorption of linear and cyclic hydrocarbons are comparable and significantly higher than those of branched hydrocarbons. For molecules with C=C double bonds only 13X-APG showed higher enthalpies of adsorption and thus stronger interactions.</span></p></div>","PeriodicalId":392,"journal":{"name":"Microporous and Mesoporous Materials","volume":"302 ","pages":"Article 110205"},"PeriodicalIF":4.8000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.micromeso.2020.110205","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microporous and Mesoporous Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1387181120302080","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 13
Abstract
In a systematic experimental work, the adsorption of linear, branched and cyclic C5 and C6 hydrocarbons on the zeolites 13X-APG and HiSiv 3000 and the activated carbon Norit R1 Extra is studied. By simultaneous measurement of adsorption capacities and load-dependent enthalpies of adsorption using a self-developed sensor gas calorimeter a deep knowledge about the energetic strength of interactions in adsorption is gained. A special focus is laid on the discussion of the influence of pore geometry and surface chemistry of the adsorbents as well as the molecular structure and binding types of the adsorptives used. Depending on the pore geometry and the surface chemistry of the adsorbents, the load-dependent enthalpies of adsorption show different shapes. While the enthalpies of adsorption on the Faujasite zeolite increase with loading, they are independent of loading on the ZSM-5 zeolite and decrease on the activated carbon. On both zeolites the cyclic and branched adsorptive molecules show lower enthalpies of adsorption compared to the linear molecules due to a less favorable arrangement on the surface. On activated carbon, the enthalpies of adsorption of linear and cyclic hydrocarbons are comparable and significantly higher than those of branched hydrocarbons. For molecules with C=C double bonds only 13X-APG showed higher enthalpies of adsorption and thus stronger interactions.
期刊介绍:
Microporous and Mesoporous Materials covers novel and significant aspects of porous solids classified as either microporous (pore size up to 2 nm) or mesoporous (pore size 2 to 50 nm). The porosity should have a specific impact on the material properties or application. Typical examples are zeolites and zeolite-like materials, pillared materials, clathrasils and clathrates, carbon molecular sieves, ordered mesoporous materials, organic/inorganic porous hybrid materials, or porous metal oxides. Both natural and synthetic porous materials are within the scope of the journal.
Topics which are particularly of interest include:
All aspects of natural microporous and mesoporous solids
The synthesis of crystalline or amorphous porous materials
The physico-chemical characterization of microporous and mesoporous solids, especially spectroscopic and microscopic
The modification of microporous and mesoporous solids, for example by ion exchange or solid-state reactions
All topics related to diffusion of mobile species in the pores of microporous and mesoporous materials
Adsorption (and other separation techniques) using microporous or mesoporous adsorbents
Catalysis by microporous and mesoporous materials
Host/guest interactions
Theoretical chemistry and modelling of host/guest interactions
All topics related to the application of microporous and mesoporous materials in industrial catalysis, separation technology, environmental protection, electrochemistry, membranes, sensors, optical devices, etc.