Additive manufacturing – A review of hot deformation behavior and constitutive modeling of flow stress

IF 12.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Current Opinion in Solid State & Materials Science Pub Date : 2022-06-01 DOI:10.1016/j.cossms.2022.100992
Reza Motallebi, Zeinab Savaedi, Hamed Mirzadeh
{"title":"Additive manufacturing – A review of hot deformation behavior and constitutive modeling of flow stress","authors":"Reza Motallebi,&nbsp;Zeinab Savaedi,&nbsp;Hamed Mirzadeh","doi":"10.1016/j.cossms.2022.100992","DOIUrl":null,"url":null,"abstract":"<div><p>Hot working, as an important group of post-processing routes for additive manufacturing technology (3D printing), is used to reduce the solidification/processing defects and anisotropy of properties, grain refinement, improvement of mechanical properties, processing of pre-formed parts, and increasing the applicability domain. Accordingly, the present state of the art of the elevated temperature deformation behavior and constitutive description of flow stress during thermomechanical processing of additively manufactured parts is summarized in this monograph. Besides the effects of temperature and strain rate (represented by the Zener-Hollomon parameter), the significance of initial phases and the type of additive manufacturing process on the hot deformed microstructure, restoration processes of dynamic recovery (DRV) and dynamic recrystallization (DRX), flow stress, workability, and hot deformation activation energy is critically discussed. In this regard, the α'-martensite in Ti-6Al-4V titanium alloy produced by selective laser melting (SLM), the precipitates in aluminum alloys (such as 2219 Al alloy) produced by wire and arc additive manufacturing (WAAM), and the Laves phase in Inconel 718 superalloy produced by laser metal deposition (LMD) are remarkable examples. The utilization of innovative methods with in situ hot working effects such as additive friction stir deposition (AFSD) is also enlightened. Regarding the constitutive equations for modeling and prediction of hot flow stress, the reports on the strain-compensated Arrhenius model, artificial neural network (ANN) approach, DRX/DRV kinetics models, Johnson-Cook equation, and Fields-Backofen formula are presented, and the potentials of the modified, simplified, and physically-based approaches are discussed. Finally, the future prospects in this research field such as the hybridization of additive manufacturing with hot forming processes, work-hardening analysis for obtaining the onset of DRX, unraveling the effects of as-built microstructure, developing processing maps, proposing some physical-based unified constitutive models, and investigation of novel and/or widely-used alloys such as austenitic stainless steels, high-entropy alloys, and aluminum alloys (e.g. AlSi10Mg alloy) are proposed.</p></div>","PeriodicalId":295,"journal":{"name":"Current Opinion in Solid State & Materials Science","volume":"26 3","pages":"Article 100992"},"PeriodicalIF":12.2000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"70","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Solid State & Materials Science","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1359028622000122","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 70

Abstract

Hot working, as an important group of post-processing routes for additive manufacturing technology (3D printing), is used to reduce the solidification/processing defects and anisotropy of properties, grain refinement, improvement of mechanical properties, processing of pre-formed parts, and increasing the applicability domain. Accordingly, the present state of the art of the elevated temperature deformation behavior and constitutive description of flow stress during thermomechanical processing of additively manufactured parts is summarized in this monograph. Besides the effects of temperature and strain rate (represented by the Zener-Hollomon parameter), the significance of initial phases and the type of additive manufacturing process on the hot deformed microstructure, restoration processes of dynamic recovery (DRV) and dynamic recrystallization (DRX), flow stress, workability, and hot deformation activation energy is critically discussed. In this regard, the α'-martensite in Ti-6Al-4V titanium alloy produced by selective laser melting (SLM), the precipitates in aluminum alloys (such as 2219 Al alloy) produced by wire and arc additive manufacturing (WAAM), and the Laves phase in Inconel 718 superalloy produced by laser metal deposition (LMD) are remarkable examples. The utilization of innovative methods with in situ hot working effects such as additive friction stir deposition (AFSD) is also enlightened. Regarding the constitutive equations for modeling and prediction of hot flow stress, the reports on the strain-compensated Arrhenius model, artificial neural network (ANN) approach, DRX/DRV kinetics models, Johnson-Cook equation, and Fields-Backofen formula are presented, and the potentials of the modified, simplified, and physically-based approaches are discussed. Finally, the future prospects in this research field such as the hybridization of additive manufacturing with hot forming processes, work-hardening analysis for obtaining the onset of DRX, unraveling the effects of as-built microstructure, developing processing maps, proposing some physical-based unified constitutive models, and investigation of novel and/or widely-used alloys such as austenitic stainless steels, high-entropy alloys, and aluminum alloys (e.g. AlSi10Mg alloy) are proposed.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增材制造-热变形行为和流动应力的本构建模综述
热加工作为增材制造技术(3D打印)的一组重要后处理路线,用于减少凝固/加工缺陷和性能的各向异性,细化晶粒,提高力学性能,加工预成形零件,增加适用范围。因此,本专著总结了增材制造零件热机械加工过程中高温变形行为和流动应力本构描述的研究现状。除了温度和应变速率(以Zener-Hollomon参数表示)、初始相和增材制造工艺类型对热变形组织的影响外,还重点讨论了动态恢复(DRV)和动态再结晶(DRX)的恢复过程、流动应力、可加工性和热变形激活能。在这方面,选择性激光熔化(SLM)生产的Ti-6Al-4V钛合金中的α′-马氏体、线弧增材制造(WAAM)生产的铝合金(如2219铝合金)中的析出相以及激光金属沉积(LMD)生产的Inconel 718高温合金中的Laves相都是值得注意的例子。同时,对具有原位热加工效果的新方法如加性搅拌摩擦沉积(AFSD)的应用也有所启发。针对热流应力建模和预测的本构方程,介绍了应变补偿Arrhenius模型、人工神经网络(ANN)方法、DRX/DRV动力学模型、Johnson-Cook方程和Fields-Backofen公式,并讨论了修正、简化和基于物理的方法的潜力。最后,展望了增材制造与热成形工艺的融合、加工硬化分析以获得DRX的起始点、揭示成品微观结构的影响、开发加工图、提出一些基于物理的统一本构模型,以及研究新型和/或广泛使用的合金,如奥氏体不锈钢、高熵合金和铝合金(如AlSi10Mg合金)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current Opinion in Solid State & Materials Science
Current Opinion in Solid State & Materials Science 工程技术-材料科学:综合
CiteScore
21.10
自引率
3.60%
发文量
41
审稿时长
47 days
期刊介绍: Title: Current Opinion in Solid State & Materials Science Journal Overview: Aims to provide a snapshot of the latest research and advances in materials science Publishes six issues per year, each containing reviews covering exciting and developing areas of materials science Each issue comprises 2-3 sections of reviews commissioned by international researchers who are experts in their fields Provides materials scientists with the opportunity to stay informed about current developments in their own and related areas of research Promotes cross-fertilization of ideas across an increasingly interdisciplinary field
期刊最新文献
The path towards plasma facing components: A review of state-of-the-art in W-based refractory high-entropy alloys Artificial Intelligence and Machine Learning for materials Grain refinement and morphological control of intermetallic compounds: A comprehensive review Autonomous research and development of structural materials – An introduction and vision Monolithic 3D integration as a pathway to energy-efficient computing and beyond: From materials and devices to architectures and chips
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1