Jonathan R Seckl, Nik M Morton, Karen E Chapman, Brian R Walker
{"title":"Glucocorticoids and 11beta-hydroxysteroid dehydrogenase in adipose tissue.","authors":"Jonathan R Seckl, Nik M Morton, Karen E Chapman, Brian R Walker","doi":"10.1210/rp.59.1.359","DOIUrl":null,"url":null,"abstract":"<p><p>The highly prevalent metabolic syndrome (insulin resistance, type 2 diabetes, dyslipidemia, hypertension, along with abdominal obesity) resembles Cushing's syndrome. However, in simple obesity, plasma cortisol levels are not elevated. 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), at least in mature adipocytes and hepatocytes, converts inactive circulating 11-keto steroids into active glucocorticoids, amplifying local glucocorticoid action. 11beta-HSD1 is elevated in adipose tissue in obese humans and rodents, suggesting that adipose tissue glucocorticoid excess may explain the conundrum. Indeed, transgenic mice overexpressing 11beta-HSD1 in adipose tissue faithfully replicate the metabolic syndrome. Conversely, 11beta-HSD1(-/-) mice resist the metabolic consequences of stress and high-fat feeding via insulin sensitisation and other advantageous effects in the liver and adipose tissue. Adipose 11beta-HSD1 deficiency contributes to a protective metabolic phenotype, supporting its role as a therapeutic target for the metabolic syndrome.</p>","PeriodicalId":21099,"journal":{"name":"Recent progress in hormone research","volume":"59 ","pages":"359-93"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"251","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent progress in hormone research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1210/rp.59.1.359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 251
Abstract
The highly prevalent metabolic syndrome (insulin resistance, type 2 diabetes, dyslipidemia, hypertension, along with abdominal obesity) resembles Cushing's syndrome. However, in simple obesity, plasma cortisol levels are not elevated. 11beta-hydroxysteroid dehydrogenase type 1 (11beta-HSD1), at least in mature adipocytes and hepatocytes, converts inactive circulating 11-keto steroids into active glucocorticoids, amplifying local glucocorticoid action. 11beta-HSD1 is elevated in adipose tissue in obese humans and rodents, suggesting that adipose tissue glucocorticoid excess may explain the conundrum. Indeed, transgenic mice overexpressing 11beta-HSD1 in adipose tissue faithfully replicate the metabolic syndrome. Conversely, 11beta-HSD1(-/-) mice resist the metabolic consequences of stress and high-fat feeding via insulin sensitisation and other advantageous effects in the liver and adipose tissue. Adipose 11beta-HSD1 deficiency contributes to a protective metabolic phenotype, supporting its role as a therapeutic target for the metabolic syndrome.