Obesity is associated with increased cardiovascular morbidity and mortality, in part through development of hypertension. Recent observations suggest that the cardiovascular actions of leptin may help explain the link between excess fat mass and cardiovascular diseases. Leptin is an adipocyte-derived hormone that acts in the central nervous system to promote weight loss by decreasing food intake and increasing metabolic rate. Leptin causes a significant increase in overall sympathetic nervous activity, which appears to be due to direct hypothalamic effects and is mediated by neuropeptide systems such as the melanocortin system and corticotropin-releasing hormone. Renal sympathoactivation to leptin is preserved in the presence of obesity, despite resistance to the metabolic effects of leptin. Such selective leptin resistance, in the context of circulating hyperleptinemia, could predispose to obesity-related hypertension. Some in vitro studies have suggested that leptin may have peripheral actions such as endothelium-mediated vasodilation that might oppose sympathetically induced vasoconstriction. However, we and others have shown that leptin does not have direct vasodilator effects in vivo. The fact that chronic leptin administration or overexpression of leptin produces hypertension supports the concept that the hemodynamic actions of leptin are due predominantly to sympathetic activation. Exploration of the sites and mechanisms of leptin resistance should provide novel therapeutic strategies for obesity, insulin resistance, and hypertension.
There is now considerable consensus that the adipocyte hormone leptin and the pancreatic hormone insulin are important regulators of food intake and energy balance. Leptin and insulin fulfill many of the requirements to be putative adiposity signals to the brain. Plasma leptin and insulin levels are positively correlated with body weight and with adipose mass in particular. Furthermore, both leptin and insulin enter the brain from the plasma. The brain expresses both insulin and leptin receptors in areas important in the control of food intake and energy balance. Consistent with their roles as adiposity signals, exogenous leptin and insulin both reduce food intake when administered locally into the brain in a number of species under different experimental paradigms. Additionally, central administration of insulin antibodies increases food intake and body weight. Recent studies have demonstrated that both insulin and leptin have additive effects when administered simultaneously. Finally, we recently have demonstrated that leptin and insulin share downstream neuropeptide signaling pathways. Hence, insulin and leptin provide important negative feedback signals to the central nervous system, proportional to peripheral energy stores and coupled with catabolic circuits.
Increased or reduced action of thyroid hormone on certain molecular pathways in the heart and vasculature causes relevant cardiovascular derangements. It is well established that overt hyperthyroidism induces a hyperdynamic cardiovascular state (high cardiac output with low systemic vascular resistance), which is associated with a faster heart rate, enhanced left ventricular (LV) systolic and diastolic function, and increased prevalence of supraventricular tachyarrhythmias - namely, atrial fibrillation - whereas overt hypothyroidism is characterized by the opposite changes. However, whether changes in cardiac performance associated with overt thyroid dysfunction are due mainly to alterations of myocardial contractility or to loading conditions remains unclear. Extensive evidence indicates that the cardiovascular system responds to the minimal but persistent changes in circulating thyroid hormone levels, which are typical of individuals with subclinical thyroid dysfunction. Subclinical hyperthyroidism is associated with increased heart rate, atrial arrhythmias, increased LV mass, impaired ventricular relaxation, reduced exercise performance, and increased risk of cardiovascular mortality. Subclinical hypothyroidism is associated with impaired LV diastolic function and subtle systolic dysfunction and an enhanced risk for atherosclerosis and myocardial infarction. Because all cardiovascular abnormalities are reversed by restoration of euthyroidism ("subclinical hypothyroidism") or blunted by beta-blockade and L-thyroxine (L-T4) dose tailoring ("subclinical hyperthyroidism"), timely treatment is advisable in an attempt to avoid adverse cardiovascular effects. Interestingly, some data indicate that patients with acute and chronic cardiovascular disorders and those undergoing cardiac surgery may have altered peripheral thyroid hormone metabolism that, in turn, may contribute to altered cardiac function. Preliminary clinical investigations suggest that administration of thyroid hormone or its analogue 3,5-diiodothyropropionic acid greatly benefits these patients, highlighting the potential role of thyroid hormone treatment in patients with acute and chronic cardiovascular disease.
Cardiac myocyte enlargement is the eponymous characteristic of cardiac hypertrophy, regardless of the instigating signal. Such triggers include biomechanical stress (e.g., work load, compensation for ischemic damage), sarcomeric protein mutations, cytoskeletal protein mutations, abnormal energetics, G protein-coupled receptors for ligands (including angiotensin II and endothelin-1), or their signal transducers within cells. In turn, increased myocyte size reflects increased RNA and protein content per cell as responses to these stimuli. In eukaryotic cells, the large subunit of RNA polymerase II (RNAPII) becomes extensively phosphorylated in its serine-rich C-terminal domain (CTD) during the transition from transcript initiation to transcript elongation - that is, "escape" of RNAPII from the promoter-proximal region into the open reading frame. Although this process is believed to be crucial to productive synthesis of mRNA and is known to be governed by two atypical cyclin-dependent kinases, Cdk7 and Cdk9, surprisingly little is understood of how regulatory pathways within cells intersect these RNAPII-directed protein kinases. Investigations of the CTD kinase module in cardiac hypertrophy provide a tentative initial map of a molecular circuit controlling cell size through regulated phosphorylation of RNAPII.
The tyrosine kinase receptor erbB2, also known in humans as Her2, is a member of the epidermal growth factor receptor (EGFR or erbB1) family, which also includes erbB3 and erbB4. The erbBs were discovered in an avian erythroblastosis tumor virus and exhibited similarities to human EGFR (Yarden and Sliwkowski, 2001). Her2/erbB2 is highly expressed in many cancer types. Its overexpression is correlated with a poor prognosis for breast and ovarian cancer patients. ErbB receptors bind to a family of growth factors, termed neuregulins/heregulin (NRG/HRG), which comprise NRG-1, -2, -3, and -4 and include multiple isoforms. ErbB2/Her2 is an orphan receptor that does not bind ligand alone but heterodimerizes with the other erbB receptors for NRG signaling. ErbB2 is expressed in multiple neuronal and non-neuronal tissues in embryos and adult animals, including the heart. Genetic data demonstrated that erbB2 is required for normal embryonic development of neural crest-derived cranial sensory neurons. ErbB2/Her2-null mutant embryos of a trabeculation defect die before embryonic day (E) 11. To study its role at later stages of development, we generated a transgenic mouse line that specifically expresses the rat erbB2 cDNA in the heart under the control of the cardiac-specific alpha-myosin heavy chain promoter. When crossed into the null background, the expression of the rat erbB2 cDNA rescued the cardiac phenotype in the erbB2-null mutant mice that survive until birth but display an absence of Schwann cells and a severe loss of both motor and spinal sensory neurons. To study the role of erbB2 in the adult heart, we generated conditional mutant mice carrying a cardiac-restricted deletion of erbB2. These erbB2 conditional mutants exhibited multiple independent parameters of dilated cardiomyopathy, including chamber dilation, wall thinning, and decreased contractility. Interestingly, treatment of breast cancers overexpressing erbB2 with Herceptin (Trastuzumab), a humanized monoclonal antibody specific to the extracellular domain of erbB2, results in some patients developing cardiac dysfunction. The adverse effect is increased significantly in those patients who also receive the chemotherapeutical agent anthracycline. We found that erbB2-deficient cardiac myocytes are more susceptible to anthracycline-induced cytotoxicity. These results suggest that erbB2 signaling in the heart is essential for the prevention of dilated cardiomyopathy. These lines of mice provide models with which to elucidate the molecular and cellular mechanisms by which erbB2 signaling regulates cardiac functions. These mice also will provide important information for devising strategies to mitigate the cardiotoxic effects of Herceptin treatment, allowing for the potential expanded use of this drug to treat all cancers overexpressing erbB2.
Abundant data now demonstrate that the growth of new blood vessels, termed angiogenesis, plays both pathological and beneficial roles in human disease. Based on these data, a tremendous effort has been undertaken to understand the molecular mechanisms that drive blood vessel growth in adult tissues. Tie2 recently was identified as a receptor tyrosine kinase expressed principally on vascular endothelium. Disrupting Tie2 function in mice resulted in embryonic lethality with defects in embryonic vasculature, suggesting a role in blood vessel maturation and maintenance. Based on these studies, we undertook a series of studies to probe the function of Tie2 in adult vasculature that will form the focus of this chapter. Consistent with a role in blood vessel growth in adult vasculature, Tie2 was upregulated and activated in the endothelium of rat ovary and in healing rat skin wounds, both areas of active angiogenesis. Moreover, Tie2 was upregulated in the endothelium of vascular "hot spots" in human breast cancer specimens. Surprisingly, Tie2 also was expressed and activated in the endothelium of all normal rat tissues examined, suggesting a role in maintenance of adult vasculature. To determine the functional role of Tie2 in tumor vasculature, a soluble Tie2 extracellular domain (ExTek) was designed that blocked the activation of Tie2 by its activating ligand, angiopoietin 1 (Ang1). Administration of recombinant ExTek protein or an ExTek adenovirus inhibited tumor growth and metastasis in rodent tumor models, demonstrating a functional role for Tie2 in pathological angiogenesis in adult tissues. To begin to understand the endothelial signaling pathways and cellular responses that mediate Tie2 function, we identified signaling molecules that are recruited to the activated, autophosphorylated Tie2 kinase domain. Two of these molecules, SHP2 and GRB2, are part of the pathway upstream of mitogen-activated protein kinase (MAPK) activation, a pathway that may be responsible for morphogenetic effects of Tie2 on endothelial cells. Another signaling molecule, p85, is responsible for recruitment of phosphatidylinositol 3 kinase (PI3-K) and activation of the Akt/PI3-K pathway. Akt/PI3-K has emerged as a critical pathway downstream of Tie2 that is necessary for cell survival effects as well as for chemotaxis, activation of endothelial nitric oxide synthase, and perhaps for anti-inflammatory effects of Tie2 activation. Taken together, these studies and many others demonstrate that the Tie2 pathway has important functions in adult tissues, in both quiescent vasculature and during angiogenesis, and help to validate the Tie2 pathway as a therapeutic target.
Most actions of glucocorticoids (GCs) are mediated by the glucocorticoid receptor (GR). The interindividual response to GCs varies considerably, as demonstrated by a variable suppressive response to 0.25-mg dexamethasone (DEX). Several polymorphisms in the gene coding for the GR have been described. It is unclear to what extent the observed response variability is due to GR polymorphisms or to other factors. However, at least three polymorphisms seem to be associated with altered GC sensitivity and changes in body composition and metabolic parameters. The N363S polymorphism has been associated with increased sensitivity to GCs, increased insulin response to DEX, a tendency towards lower bone mineral density, and increased body mass index (BMI). However, other reports found no associations with BMI. Another polymorphism, previously described as a BclI restriction fragment length polymorphism, recently was identified as a C --> G nucleotide change. The G allele also was associated with increased sensitivity to GCs. In middle-aged subjects, the G allele of this BclI polymorphism was associated with increased abdominal obesity, while at older age, a lower BMI was found, accompanied by a tendency towards lower lean body mass. A third polymorphism consists of two linked, single-nucleotide mutations in codons 22 and 23, of which the second mutation results in an amino acid change from arginine (R) to lysine (K). In contrast to the other polymorphisms, this ER22/23EK polymorphism was associated with a relative resistance to GCs. In line with this, ER22/23EK carriers had lower total cholesterol and low-density lipoprotein cholesterol levels as well as lower fasting insulin concentrations and a better insulin sensitivity. C-reactive protein levels were lower in ER22/23EK carriers, as was found in a different population of elderly males. In accordance with this healthy metabolic profile, we found in this population a significantly better survival in ER22/23EK carriers after a 4-year follow-up. GCs also affect the brain. Although a certain level of cortisol is essential for proper brain functioning, excessive GC levels have been shown to negatively affect brain morphology and functions. At older age, we found that the risk of dementia and white matter lesions was lower in ER22/23EK carriers. GCs are also important in the regulation of body fat distribution. At young age, we observed sex-specific differences in body composition. Male ER22/23EK carriers were taller, had more muscle mass, and were stronger than noncarriers. In young females, ER22/23EK carriers had tendencies towards smaller waist and hip circumferences and lower body weight. Another polymorphism (TthIIII) was not associated with altered GC sensitivity. In conclusion, these polymorphisms in the GR gene may contribute considerably to the observed variability in GC sensitivity. As a result, they are associated with several differences in body composition and metabolic factors.
Our understanding of the effects of leptin have stemmed mainly from animal studies, which continue to leave important clues of its roles in physiology, metabolism, neuroscience, and cell signaling. Since its discovery, leptin has been linked to various pathways, either directly at its primary site of action in the hypothalamus, or indirectly via downstream effector pathways such as in adipocytes and muscle. Leptin's importance is exemplified by the lack of redundant backup mechanisms, since leptin-deficient mice are obese, diabetic, and sterile. Investigations uncovering the pleiotropic actions of leptin were unfolded mainly from rodent models. Thus, this chapter focuses on these studies and, more specifically, on those findings recently brought forward by transgenic mice overexpressing leptin. The vast amount of biology that has been ascribed to leptin encompasses effects on food intake, insulin sensitivity, adiposity, thermogenesis, reproduction, immunity, and bone regulation. Mechanisms underlying leptin's action revolve essentially around neural pathways but also encompass to a lesser extent peripheral mechanisms. The roles of leptin along these axes are reviewed, with particular emphasis on pathways and phenotypes generated by transgenic hyperleptinemia. An evolutionary significance of hyperleptinemia in association with development of leptin resistance is suggested as a protective armament against some of the detrimental effects caused by hyperleptinemia in transgenic mice overexpressing leptin.