{"title":"A biocompatible magnetic film: synthesis and characterization.","authors":"Jhunu Chatterjee, Yousef Haik, Ching Jen Chen","doi":"10.1186/1477-044X-2-2","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND: Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. METHODS: A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (gamma-Fe2O3, ~7 nm) have been used to produce the magnetic gel. RESULTS: The surface morphology and magnetic properties of the gel films were studied. The iron oxide particles are superparamagnetic and the gel film also showed superparamagnetic behavior. CONCLUSION: Magnetic gel made out of crosslinked magnetic nanoparticles in the polymer network was found to be stable and possess the magnetic properties of the nanoparticles.</p>","PeriodicalId":8888,"journal":{"name":"Biomagnetic Research and Technology","volume":"2 1","pages":"2"},"PeriodicalIF":0.0000,"publicationDate":"2004-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1477-044X-2-2","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomagnetic Research and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1477-044X-2-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
BACKGROUND: Biotechnology applications of magnetic gels include biosensors, targeted drug delivery, artificial muscles and magnetic buckles. These gels are produced by incorporating magnetic materials in the polymer composites. METHODS: A biocompatible magnetic gel film has been synthesized using polyvinyl alcohol. The magnetic gel was dried to generate a biocompatible magnetic film. Nanosized iron oxide particles (gamma-Fe2O3, ~7 nm) have been used to produce the magnetic gel. RESULTS: The surface morphology and magnetic properties of the gel films were studied. The iron oxide particles are superparamagnetic and the gel film also showed superparamagnetic behavior. CONCLUSION: Magnetic gel made out of crosslinked magnetic nanoparticles in the polymer network was found to be stable and possess the magnetic properties of the nanoparticles.