Alternative splicing affects the function and tissue-specific expression of the human constitutive androstane receptor.

Katja A Arnold, Michel Eichelbaum, Oliver Burk
{"title":"Alternative splicing affects the function and tissue-specific expression of the human constitutive androstane receptor.","authors":"Katja A Arnold,&nbsp;Michel Eichelbaum,&nbsp;Oliver Burk","doi":"10.1186/1478-1336-2-1","DOIUrl":null,"url":null,"abstract":"<p><p>BACKGROUND: The constitutive androstane receptor (CAR) plays a key role in the control of drug metabolism and transport by mediating the phenobarbital-type induction of many phase I and II drug metabolizing enzymes and drug transporters. RESULTS: We identified transcripts generated by four different alternative splicing events in the human CAR gene. Two of the corresponding ligand binding domain isoforms demonstrated novel functional properties: First, CAR(SV3), which is encoded by a transcript containing an lengthened exon 7, differentially transactivated target gene promoters. Second, CAR(SV2), which results from the use of an alternative 3' splice site lengthening exon 8, showed ligand-dependent instead of constitutive interaction with coactivators. Furthermore, alternatively spliced transcripts demonstrated a tissue-specific expression pattern. In most tissues, only transcripts generated by alternative splicing within exon 9 were expressed. The encoded variant demonstrated a loss-of-function phenotype. Correct splicing of exon 8 to exon 9 is restricted to only a few tissues, among them liver and small intestine for which CAR function has been demonstrated, and is associated with the induction of CAR expression during differentiation of intestinal cells. CONCLUSION: Due to their specific activities, CAR variant proteins SV2 and SV3 may modulate the activity of reference CAR(SV1). Furthermore, we propose that transcriptional activation and regulation of splicing of exon 9 may be coupled to ensure appropriate tissue- and differentiation state-specific expression of transcripts encoding functional CAR protein. Altogether, alternative splicing seems to be of utmost importance for the regulation of CAR expression and function.</p>","PeriodicalId":86148,"journal":{"name":"Nuclear receptor","volume":"2 1","pages":"1"},"PeriodicalIF":0.0000,"publicationDate":"2004-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/1478-1336-2-1","citationCount":"94","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear receptor","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/1478-1336-2-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 94

Abstract

BACKGROUND: The constitutive androstane receptor (CAR) plays a key role in the control of drug metabolism and transport by mediating the phenobarbital-type induction of many phase I and II drug metabolizing enzymes and drug transporters. RESULTS: We identified transcripts generated by four different alternative splicing events in the human CAR gene. Two of the corresponding ligand binding domain isoforms demonstrated novel functional properties: First, CAR(SV3), which is encoded by a transcript containing an lengthened exon 7, differentially transactivated target gene promoters. Second, CAR(SV2), which results from the use of an alternative 3' splice site lengthening exon 8, showed ligand-dependent instead of constitutive interaction with coactivators. Furthermore, alternatively spliced transcripts demonstrated a tissue-specific expression pattern. In most tissues, only transcripts generated by alternative splicing within exon 9 were expressed. The encoded variant demonstrated a loss-of-function phenotype. Correct splicing of exon 8 to exon 9 is restricted to only a few tissues, among them liver and small intestine for which CAR function has been demonstrated, and is associated with the induction of CAR expression during differentiation of intestinal cells. CONCLUSION: Due to their specific activities, CAR variant proteins SV2 and SV3 may modulate the activity of reference CAR(SV1). Furthermore, we propose that transcriptional activation and regulation of splicing of exon 9 may be coupled to ensure appropriate tissue- and differentiation state-specific expression of transcripts encoding functional CAR protein. Altogether, alternative splicing seems to be of utmost importance for the regulation of CAR expression and function.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
选择性剪接影响人类组成雄甾受体的功能和组织特异性表达。
背景:组成型雄甾受体(CAR)通过介导苯巴比妥型诱导多种I期和II期药物代谢酶和药物转运体,在药物代谢和转运控制中起关键作用。结果:我们鉴定了人类CAR基因中由四种不同的选择性剪接事件产生的转录本。两种相应的配体结合域异构体显示出新的功能特性:首先,CAR(SV3),由包含加长外显子7的转录物编码,差异转激活靶基因启动子。其次,CAR(SV2),由于使用了另一个3'剪接位点延长外显子8,显示出配体依赖性而不是与共激活子的构形相互作用。此外,选择性剪接转录物显示出组织特异性表达模式。在大多数组织中,只有外显子9内选择性剪接产生的转录本被表达。编码的变体表现出功能丧失表型。外显子8到外显子9的正确剪接仅限于少数组织,其中肝脏和小肠已经证明了CAR的功能,并且与肠细胞分化过程中诱导CAR表达有关。结论:CAR变异蛋白SV2和SV3可能通过其特异性活性调控参比CAR(SV1)的活性。此外,我们提出,转录激活和外显子9剪接的调控可能是耦合的,以确保编码功能性CAR蛋白的转录本在组织和分化状态下的适当表达。总之,选择性剪接似乎对CAR的表达和功能调控至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Treatment Strategy for Traumatic Brain Injury Depending on Severity In Expectation of a Tridemic: Circulation of ARVI Pathogens in the Republic of Belarus During the Epidemic Season 2022–2023 Structure and Analysis of the Nasal Pharmaceutical Market in Belarus Adaptation of Children in Kindergarten and Prevention of Repeated Respiratory Morbidity Antibacterial Therapy for Infectious Heart Diseases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1