Inhibition of TRIM14 protects cerebral ischemia/reperfusion injury through regulating NF-κB/NLRP3 pathway-mediated inflammation and apoptosis.

IF 2.6 4区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Receptors and Signal Transduction Pub Date : 2022-04-01 Epub Date: 2021-03-10 DOI:10.1080/10799893.2021.1887218
Xianlong Xie, Fan Wang, Xiujuan Li
{"title":"Inhibition of TRIM14 protects cerebral ischemia/reperfusion injury through regulating NF-κB/NLRP3 pathway-mediated inflammation and apoptosis.","authors":"Xianlong Xie,&nbsp;Fan Wang,&nbsp;Xiujuan Li","doi":"10.1080/10799893.2021.1887218","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Many proteins in tripartite motif (TRIM) family have been reported to play an important role in cerebral ischemia/reperfusion (I/R) injury. This study was designed to investigate the effect of TRIM14 on the cerebral I/R injury in rats.</p><p><strong>Methods: </strong>The rat model was constructed through inserting thread into the middle cerebral artery. The expression of TRIM14 was measured by qRT-PCR, immunoblotting, and immunofluorescence. The hippocampal sections were stained with 2,3,5-triphenyltetrazolium chloride (TTC) to determine infarct volume and used for measuring the neurologic deficit score and brain water content. The H&E staining was used for immunohistochemical (IHC) staining. The number of apoptotic cells was measured by fluorescence microscopy. The levels of IL-6, IL-1β, and TNFα were detected by qRT-PCR and ELISA. The swimming speed, latency time, and number of platform crossings were measured by the water maze test.</p><p><strong>Results: </strong>TRIM14 was significantly enhanced in rats with cerebral I/R injury compared to Sham rats, showing its highest level at 24 h after I/R. TRIM14 inhibition reduced ischemic brain injury, suppressed neuron apoptosis, suppressed inflammation, and improved cognitive dysfunction in rats with cerebral I/R injury. TRIM14 inhibition also suppressed the activation of NF-κB/NLRP3 pathway in rats with cerebral I/R injury.</p><p><strong>Conclusion: </strong>In conclusion, the expression of TRIM14 was increased in rats with cerebral I/R injury, the protective effect of TRIM14 inhibitor on cerebral I/R injury in rats depends on its anti-apoptotic and anti-inflammatory effect. The underlying mechanism was, at least partially, through regulating NF-κB/NLRP3 pathway.</p>","PeriodicalId":16962,"journal":{"name":"Journal of Receptors and Signal Transduction","volume":"42 2","pages":"197-205"},"PeriodicalIF":2.6000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/10799893.2021.1887218","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Receptors and Signal Transduction","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/10799893.2021.1887218","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2021/3/10 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

Purpose: Many proteins in tripartite motif (TRIM) family have been reported to play an important role in cerebral ischemia/reperfusion (I/R) injury. This study was designed to investigate the effect of TRIM14 on the cerebral I/R injury in rats.

Methods: The rat model was constructed through inserting thread into the middle cerebral artery. The expression of TRIM14 was measured by qRT-PCR, immunoblotting, and immunofluorescence. The hippocampal sections were stained with 2,3,5-triphenyltetrazolium chloride (TTC) to determine infarct volume and used for measuring the neurologic deficit score and brain water content. The H&E staining was used for immunohistochemical (IHC) staining. The number of apoptotic cells was measured by fluorescence microscopy. The levels of IL-6, IL-1β, and TNFα were detected by qRT-PCR and ELISA. The swimming speed, latency time, and number of platform crossings were measured by the water maze test.

Results: TRIM14 was significantly enhanced in rats with cerebral I/R injury compared to Sham rats, showing its highest level at 24 h after I/R. TRIM14 inhibition reduced ischemic brain injury, suppressed neuron apoptosis, suppressed inflammation, and improved cognitive dysfunction in rats with cerebral I/R injury. TRIM14 inhibition also suppressed the activation of NF-κB/NLRP3 pathway in rats with cerebral I/R injury.

Conclusion: In conclusion, the expression of TRIM14 was increased in rats with cerebral I/R injury, the protective effect of TRIM14 inhibitor on cerebral I/R injury in rats depends on its anti-apoptotic and anti-inflammatory effect. The underlying mechanism was, at least partially, through regulating NF-κB/NLRP3 pathway.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑制TRIM14通过调节NF-κB/NLRP3通路介导的炎症和凋亡来保护脑缺血/再灌注损伤。
目的:tripartite motif (TRIM)家族中的许多蛋白在脑缺血再灌注(I/R)损伤中起重要作用。本研究旨在探讨TRIM14对大鼠脑I/R损伤的影响。方法:采用脑中动脉穿刺术建立大鼠模型。采用qRT-PCR、免疫印迹和免疫荧光检测TRIM14的表达。海马切片用2,3,5-三苯四氮唑(TTC)染色测定梗死面积,并测定神经功能缺损评分和脑含水量。免疫组化(IHC)染色采用H&E染色。荧光显微镜下观察凋亡细胞的数量。采用qRT-PCR和ELISA检测各组IL-6、IL-1β、TNFα水平。通过水迷宫实验测量游泳速度、潜伏期和穿越平台次数。结果:与Sham大鼠相比,TRIM14在脑I/R损伤大鼠中显著增强,在I/R后24 h达到最高水平。TRIM14抑制可减轻脑I/R损伤大鼠缺血性脑损伤,抑制神经元凋亡,抑制炎症,改善认知功能障碍。TRIM14抑制还抑制了脑I/R损伤大鼠NF-κB/NLRP3通路的激活。结论:TRIM14在脑I/R损伤大鼠中表达升高,TRIM14抑制剂对脑I/R损伤大鼠的保护作用主要是其抗凋亡和抗炎作用。其潜在机制至少部分是通过调节NF-κB/NLRP3通路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Receptors and Signal Transduction
Journal of Receptors and Signal Transduction 生物-生化与分子生物学
CiteScore
6.60
自引率
0.00%
发文量
19
审稿时长
>12 weeks
期刊介绍: Journal of Receptors and Signal Tranduction is included in the following abstracting and indexing services: BIOBASE; Biochemistry and Biophysics Citation Index; Biological Abstracts; BIOSIS Full Coverage Shared; BIOSIS Previews; Biotechnology Abstracts; Current Contents/Life Sciences; Derwent Chimera; Derwent Drug File; EMBASE; EMBIOLOGY; Journal Citation Reports/ Science Edition; PubMed/MedLine; Science Citation Index; SciSearch; SCOPUS; SIIC.
期刊最新文献
Novel therapeutic approaches targeting 5-HT7 receptors outside the central nervous system. Deciphering the involvement of norepinephrine and β-adrenergic receptor subtypes in glucose induced insulin secretion: an integrated in silico and in vitro exploration using isolated pancreatic islets of C57BL/6J mice. Quest for discovering novel CDK12 inhibitor. Computational insights into potent USP5 inhibitors based on multistep virtual screening and molecular dynamics simulation. The combined use of thymoquinone and metformin provides more effective neuroprotection in a mouse model of MPTP-induced Parkinson's disease.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1