A tree-decomposition approach to protein structure prediction.

Jinbo Xu, Feng Jiao, Bonnie Berger
{"title":"A tree-decomposition approach to protein structure prediction.","authors":"Jinbo Xu,&nbsp;Feng Jiao,&nbsp;Bonnie Berger","doi":"10.1109/csb.2005.9","DOIUrl":null,"url":null,"abstract":"<p><p>This paper proposes a tree decomposition of protein structures, which can be used to efficiently solve two key subproblems of protein structure prediction: protein threading for backbone prediction and protein side-chain prediction. To develop a unified tree-decomposition based approach to these two subproblems, we model them as a geometric neighborhood graph labeling problem. Theoretically, we can have a low-degree polynomial time algorithm to decompose a geometric neighborhood graph G = (V, E) into components with size O(|V|((2/3))log|V|). The computational complexity of the tree-decomposition based graph labeling algorithms is O(|V|Delta(tw+1)) where Delta is the average number of possible labels for each vertex and tw( = O(|V|((2/3))log|V|)) the tree width of G. Empirically, tw is very small and the tree-decomposition method can solve these two problems very efficiently. This paper also compares the computational efficiency of the tree-decomposition approach with the linear programming approach to these two problems and identifies the condition under which the tree-decomposition approach is more efficient than the linear programming approach. Experimental result indicates that the tree-decomposition approach is more efficient most of the time.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"247-56"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.9","citationCount":"59","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 59

Abstract

This paper proposes a tree decomposition of protein structures, which can be used to efficiently solve two key subproblems of protein structure prediction: protein threading for backbone prediction and protein side-chain prediction. To develop a unified tree-decomposition based approach to these two subproblems, we model them as a geometric neighborhood graph labeling problem. Theoretically, we can have a low-degree polynomial time algorithm to decompose a geometric neighborhood graph G = (V, E) into components with size O(|V|((2/3))log|V|). The computational complexity of the tree-decomposition based graph labeling algorithms is O(|V|Delta(tw+1)) where Delta is the average number of possible labels for each vertex and tw( = O(|V|((2/3))log|V|)) the tree width of G. Empirically, tw is very small and the tree-decomposition method can solve these two problems very efficiently. This paper also compares the computational efficiency of the tree-decomposition approach with the linear programming approach to these two problems and identifies the condition under which the tree-decomposition approach is more efficient than the linear programming approach. Experimental result indicates that the tree-decomposition approach is more efficient most of the time.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
蛋白质结构预测的树分解方法。
本文提出了一种蛋白质结构的树分解方法,该方法可以有效地解决蛋白质结构预测的两个关键子问题:用于主链预测的蛋白质线程和蛋白质侧链预测的蛋白质线程。为了开发一种统一的基于树分解的方法来解决这两个子问题,我们将它们建模为一个几何邻域图标记问题。理论上,我们可以用低次多项式时间算法将几何邻域图G = (V, E)分解为大小为O(|V|(2/3))log|V|)的分量。基于树分解的图标记算法的计算复杂度为O(|V|Delta(tw+1)),其中Delta为每个顶点可能标记的平均数目,tw(= O(|V|(2/3))log|V|))为g的树宽度。经验表明,tw很小,树分解方法可以非常有效地解决这两个问题。本文还比较了树分解方法与线性规划方法对这两个问题的计算效率,并确定了树分解方法比线性规划方法效率更高的条件。实验结果表明,树分解方法在大多数情况下都是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1