Identifying simple discriminatory gene vectors with an information theory approach.

Zheng Yun, Kwoh Chee Keong
{"title":"Identifying simple discriminatory gene vectors with an information theory approach.","authors":"Zheng Yun,&nbsp;Kwoh Chee Keong","doi":"10.1109/csb.2005.35","DOIUrl":null,"url":null,"abstract":"<p><p>In the feature selection of cancer classification problems, many existing methods consider genes individually by choosing the top genes which have the most significant signal-to-noise statistic or correlation coefficient. However the information of the class distinction provided by such genes may overlap intensively, since their gene expression patterns are similar. The redundancy of including many genes with similar gene expression patterns results in highly complex classifiers. According to the principle of Occam's razor, simple models are preferable to complex ones, if they can produce comparable prediction performances to the complex ones. In this paper, we introduce a new method to learn accurate and low-complexity classifiers from gene expression profiles. In our method, we use mutual information to measure the relation between a set of genes, called gene vectors, and the class attribute of the samples. The gene vectors are in higher-dimensional spaces than individual genes, therefore, they are more diverse, or contain more information than individual genes. Hence, gene vectors are more preferable to individual genes in describing the class distinctions between samples since they contain more information about the class attribute. We validate our method on 3 gene expression profiles. By comparing our results with those from literature and other well-known classification methods, our method demonstrated better or comparable prediction performances to the existing methods, however, with lower-complexity models than existing methods.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"13-24"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.35","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.35","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In the feature selection of cancer classification problems, many existing methods consider genes individually by choosing the top genes which have the most significant signal-to-noise statistic or correlation coefficient. However the information of the class distinction provided by such genes may overlap intensively, since their gene expression patterns are similar. The redundancy of including many genes with similar gene expression patterns results in highly complex classifiers. According to the principle of Occam's razor, simple models are preferable to complex ones, if they can produce comparable prediction performances to the complex ones. In this paper, we introduce a new method to learn accurate and low-complexity classifiers from gene expression profiles. In our method, we use mutual information to measure the relation between a set of genes, called gene vectors, and the class attribute of the samples. The gene vectors are in higher-dimensional spaces than individual genes, therefore, they are more diverse, or contain more information than individual genes. Hence, gene vectors are more preferable to individual genes in describing the class distinctions between samples since they contain more information about the class attribute. We validate our method on 3 gene expression profiles. By comparing our results with those from literature and other well-known classification methods, our method demonstrated better or comparable prediction performances to the existing methods, however, with lower-complexity models than existing methods.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用信息论方法识别简单的歧视性基因载体。
在癌症分类问题的特征选择中,现有的许多方法都是通过选择信噪统计量或相关系数最大的顶级基因来单独考虑基因。然而,由于它们的基因表达模式相似,这些基因提供的分类信息可能会有很大的重叠。包含许多具有相似基因表达模式的基因的冗余导致高度复杂的分类器。根据奥卡姆剃刀原理,如果简单模型能产生与复杂模型相当的预测性能,那么简单模型优于复杂模型。本文介绍了一种从基因表达谱中学习准确、低复杂度分类器的新方法。在我们的方法中,我们使用互信息来度量一组基因(称为基因载体)与样本的类别属性之间的关系。基因载体比个体基因处于更高的维度空间,因此,它们比个体基因更多样化,或者包含更多的信息。因此,基因载体在描述样本之间的类区别时比单个基因更可取,因为它们包含更多关于类属性的信息。我们在3个基因表达谱上验证了我们的方法。将我们的结果与文献和其他知名分类方法的结果进行比较,我们的方法显示出与现有方法更好或相当的预测性能,但模型复杂度低于现有方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1