{"title":"Learning yeast gene functions from heterogeneous sources of data using hybrid weighted Bayesian networks.","authors":"Xutao Deng, Huimin Geng, Hesham Ali","doi":"10.1109/csb.2005.38","DOIUrl":null,"url":null,"abstract":"<p><p>We developed a machine learning system for determining gene functions from heterogeneous sources of data sets using a Weighted Naive Bayesian Network (WNB). The knowledge of gene functions is crucial for understanding many fundamental biological mechanisms such as regulatory pathways, cell cycles and diseases. Our major goal is to accurately infer functions of putative genes or ORFs (Open Reading Frames) from existing databases using computational methods. However, this task is intrinsically difficult since the underlying biological processes represent complex interactions of multiple entities. Therefore many functional links would be missing when only one or two source of data is used in the prediction. Our hypothesis is that integrating evidence from multiple and complementary sources could significantly improve the prediction accuracy. In this paper, our experimental results not only suggest that the above hypothesis is valid, but also provide guidelines for using the WNB system for data collection, training and predictions. The combined training data sets contain information from gene annotations, gene expressions, clustering outputs, keyword annotations and sequence homology from public databases. The current system is trained and tested on the genes of budding yeast Saccharomyces cerevisiae. Our WNB model can also be used to analyze the contribution of each source of information toward the prediction performance through the weight training process. The contribution analysis could potentially lead to significant scientific discovery by facilitating the interpretation and understanding of the complex relationships between biological entities.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"25-34"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.38","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
We developed a machine learning system for determining gene functions from heterogeneous sources of data sets using a Weighted Naive Bayesian Network (WNB). The knowledge of gene functions is crucial for understanding many fundamental biological mechanisms such as regulatory pathways, cell cycles and diseases. Our major goal is to accurately infer functions of putative genes or ORFs (Open Reading Frames) from existing databases using computational methods. However, this task is intrinsically difficult since the underlying biological processes represent complex interactions of multiple entities. Therefore many functional links would be missing when only one or two source of data is used in the prediction. Our hypothesis is that integrating evidence from multiple and complementary sources could significantly improve the prediction accuracy. In this paper, our experimental results not only suggest that the above hypothesis is valid, but also provide guidelines for using the WNB system for data collection, training and predictions. The combined training data sets contain information from gene annotations, gene expressions, clustering outputs, keyword annotations and sequence homology from public databases. The current system is trained and tested on the genes of budding yeast Saccharomyces cerevisiae. Our WNB model can also be used to analyze the contribution of each source of information toward the prediction performance through the weight training process. The contribution analysis could potentially lead to significant scientific discovery by facilitating the interpretation and understanding of the complex relationships between biological entities.