Space-conserving optimal DNA-protein alignment.

Pang Ko, Mahesh Narayanan, Anantharaman Kalyanaraman, Srinivas Aluru
{"title":"Space-conserving optimal DNA-protein alignment.","authors":"Pang Ko,&nbsp;Mahesh Narayanan,&nbsp;Anantharaman Kalyanaraman,&nbsp;Srinivas Aluru","doi":"10.1109/csb.2004.1332420","DOIUrl":null,"url":null,"abstract":"<p><p>DNA-protein alignment algorithms can be used to discover coding sequences in a genomic sequence, if the corresponding protein derivatives are known. They can also be used to identify potential coding sequences of a newly sequenced genome, by using proteins from related species. Previously known algorithms either solve a simplified formulation, or sacrifice optimality to achieve practical implementation. In this paper, we present a comprehensive formulation of the DNA-protein alignment problem, and an algorithm to compute the optimal alignment in O(mn) time using only four tables of size (m + 1) x (n + 1), where m and n are the lengths of the DNA and protein sequences, respectively. We also developed a Protein and DNA Alignment program PanDA that implements the proposed solution. Experimental results indicate that our algorithm produces high quality alignments.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"80-8"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2004.1332420","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2004.1332420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

DNA-protein alignment algorithms can be used to discover coding sequences in a genomic sequence, if the corresponding protein derivatives are known. They can also be used to identify potential coding sequences of a newly sequenced genome, by using proteins from related species. Previously known algorithms either solve a simplified formulation, or sacrifice optimality to achieve practical implementation. In this paper, we present a comprehensive formulation of the DNA-protein alignment problem, and an algorithm to compute the optimal alignment in O(mn) time using only four tables of size (m + 1) x (n + 1), where m and n are the lengths of the DNA and protein sequences, respectively. We also developed a Protein and DNA Alignment program PanDA that implements the proposed solution. Experimental results indicate that our algorithm produces high quality alignments.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
节省空间的最佳dna -蛋白质比对。
如果相应的蛋白质衍生物已知,dna -蛋白质比对算法可用于发现基因组序列中的编码序列。它们还可以通过使用来自相关物种的蛋白质来识别新测序的基因组的潜在编码序列。以前已知的算法要么解决一个简化的公式,要么牺牲最优性来实现实际实现。在本文中,我们提出了一个DNA-蛋白质比对问题的综合公式,以及一种算法,该算法仅使用四个大小为(m + 1) x (n + 1)的表来计算O(mn)时间内的最优比对,其中m和n分别是DNA和蛋白质序列的长度。我们还开发了一个蛋白质和DNA比对程序PanDA来实现所提出的解决方案。实验结果表明,该算法能产生高质量的对齐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1