Raf M Podowski, John G Cleary, Nicholas T Goncharoff, Gregory Amoutzias, William S Hayes
{"title":"AZuRE, a scalable system for automated term disambiguation of gene and protein names.","authors":"Raf M Podowski, John G Cleary, Nicholas T Goncharoff, Gregory Amoutzias, William S Hayes","doi":"10.1109/csb.2004.1332454","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers, hindered by a lack of standard gene and protein-naming conventions, endure long, sometimes fruitless, literature searches. A system is described which is able to automatically assign gene names to their LocusLink ID (LLID) in previously unseen MEDLINE abstracts. The system is based on supervised learning and builds a model for each LLID. The training sets for all LLIDs are extracted automatically from MEDLINE references in the LocusLink and SwissProt databases. A validation was done of the performance for all 20,546 human genes with LLIDs. Of these, 7,344 produced good quality models (F-measure > 0.7, nearly 60% of which were > 0.9) and 13,202 did not, mainly due to insufficient numbers of known document references. A hand validation of MEDLINE documents for a set of 66 genes agreed well with the system's internal accuracy assessment. It is concluded that it is possible to achieve high quality gene disambiguation using scaleable automated techniques.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"415-24"},"PeriodicalIF":0.0000,"publicationDate":"2004-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2004.1332454","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2004.1332454","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers, hindered by a lack of standard gene and protein-naming conventions, endure long, sometimes fruitless, literature searches. A system is described which is able to automatically assign gene names to their LocusLink ID (LLID) in previously unseen MEDLINE abstracts. The system is based on supervised learning and builds a model for each LLID. The training sets for all LLIDs are extracted automatically from MEDLINE references in the LocusLink and SwissProt databases. A validation was done of the performance for all 20,546 human genes with LLIDs. Of these, 7,344 produced good quality models (F-measure > 0.7, nearly 60% of which were > 0.9) and 13,202 did not, mainly due to insufficient numbers of known document references. A hand validation of MEDLINE documents for a set of 66 genes agreed well with the system's internal accuracy assessment. It is concluded that it is possible to achieve high quality gene disambiguation using scaleable automated techniques.