Efficient algorithms and software for detection of full-length LTR retrotransposons.

Anantharaman Kalyanaraman, Srinivas Aluru
{"title":"Efficient algorithms and software for detection of full-length LTR retrotransposons.","authors":"Anantharaman Kalyanaraman,&nbsp;Srinivas Aluru","doi":"10.1109/csb.2005.31","DOIUrl":null,"url":null,"abstract":"<p><p>LTR retrotransposons constitute one of the most abundant classes of repetitive elements in eukaryotic genomes. In this paper, we present a new algorithm for detection of full-length LTR retrotransposons in genomic sequences. The algorithm identifies regions in a genomic sequence that show structural characteristics of LTR retrotransposons. Three key components distinguish our algorithm from that of current software - (i) a novel method that preprocesses the entire genomic sequence in linear time and produces high quality pairs of LTR candidates in running time that is constant per pair, (ii) a thorough alignment-based evaluation of candidate pairs to ensure high quality prediction, and (iii) a robust parameter set encompassing both structural constraints and quality controls providing users with a high degree of flexibility. Validation of both our serial and parallel implementations of the algorithm against the yeast genome indicates both superior quality and performance results when compared to existing software.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"56-64"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.31","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

LTR retrotransposons constitute one of the most abundant classes of repetitive elements in eukaryotic genomes. In this paper, we present a new algorithm for detection of full-length LTR retrotransposons in genomic sequences. The algorithm identifies regions in a genomic sequence that show structural characteristics of LTR retrotransposons. Three key components distinguish our algorithm from that of current software - (i) a novel method that preprocesses the entire genomic sequence in linear time and produces high quality pairs of LTR candidates in running time that is constant per pair, (ii) a thorough alignment-based evaluation of candidate pairs to ensure high quality prediction, and (iii) a robust parameter set encompassing both structural constraints and quality controls providing users with a high degree of flexibility. Validation of both our serial and parallel implementations of the algorithm against the yeast genome indicates both superior quality and performance results when compared to existing software.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
全长LTR反转录转座子检测的有效算法和软件。
LTR逆转录转座子是真核生物基因组中最丰富的重复元件之一。本文提出了一种检测基因组序列中LTR逆转录转座子全长的新算法。该算法识别基因组序列中显示LTR反转录转座子结构特征的区域。我们的算法与当前的软件有三个关键的区别:(i)一种新颖的方法,在线性时间内预处理整个基因组序列,并在运行时间内产生每对恒定的高质量LTR候选对,(ii)对候选对进行全面的基于比对的评估,以确保高质量的预测,以及(iii)一个包含结构约束和质量控制的鲁棒参数集,为用户提供高度的灵活性。我们对酵母基因组算法的串行和并行实现验证表明,与现有软件相比,该算法的质量和性能都优于现有软件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1