Bioinformatic insights from metagenomics through visualization.

Susan L Havre, Bobbie-Jo Webb-Robertson, Anuj Shah, Christian Posse, Banu Gopalan, Fred J Brockman
{"title":"Bioinformatic insights from metagenomics through visualization.","authors":"Susan L Havre,&nbsp;Bobbie-Jo Webb-Robertson,&nbsp;Anuj Shah,&nbsp;Christian Posse,&nbsp;Banu Gopalan,&nbsp;Fred J Brockman","doi":"10.1109/csb.2005.19","DOIUrl":null,"url":null,"abstract":"<p><p>Cutting-edge biological and bioinformatics research seeks a systems perspective through the analysis of multiple types of high-throughput and other experimental data for the same sample. Systems-level analysis requires the integration and fusion of such data, typically through advanced statistics and mathematics. Visualization is a complementary computational approach that supports integration and analysis of complex data or its derivatives. We present a bioinformatics visualization prototype, Juxter, which depicts categorical information derived from or assigned to these diverse data for the purpose of comparing patterns across categorizations. The visualization allows users to easily discern correlated and anomalous patterns in the data. These patterns, which might not be detected automatically by algorithms, may reveal valuable information leading to insight and discovery. We describe the visualization and interaction capabilities and demonstrate its utility in a new field, metagenomics, which combines molecular biology and genetics to identify and characterize genetic material from multi-species microbial samples.</p>","PeriodicalId":87417,"journal":{"name":"Proceedings. IEEE Computational Systems Bioinformatics Conference","volume":" ","pages":"341-50"},"PeriodicalIF":0.0000,"publicationDate":"2005-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/csb.2005.19","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. IEEE Computational Systems Bioinformatics Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/csb.2005.19","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Cutting-edge biological and bioinformatics research seeks a systems perspective through the analysis of multiple types of high-throughput and other experimental data for the same sample. Systems-level analysis requires the integration and fusion of such data, typically through advanced statistics and mathematics. Visualization is a complementary computational approach that supports integration and analysis of complex data or its derivatives. We present a bioinformatics visualization prototype, Juxter, which depicts categorical information derived from or assigned to these diverse data for the purpose of comparing patterns across categorizations. The visualization allows users to easily discern correlated and anomalous patterns in the data. These patterns, which might not be detected automatically by algorithms, may reveal valuable information leading to insight and discovery. We describe the visualization and interaction capabilities and demonstrate its utility in a new field, metagenomics, which combines molecular biology and genetics to identify and characterize genetic material from multi-species microbial samples.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过可视化从宏基因组学获得生物信息学见解。
尖端的生物学和生物信息学研究通过对同一样本的多种类型的高通量和其他实验数据的分析,寻求一个系统的视角。系统级分析通常需要通过高级统计和数学对这些数据进行整合和融合。可视化是一种辅助的计算方法,支持对复杂数据或其衍生物进行集成和分析。我们提出了一个生物信息学可视化原型,并特,它描述了从这些不同的数据衍生或分配的分类信息,以比较不同分类的模式。可视化使用户可以轻松地识别数据中的相关模式和异常模式。这些模式可能不会被算法自动检测到,但可能会揭示有价值的信息,从而导致洞察力和发现。我们描述了可视化和交互能力,并展示了它在一个新领域的应用,宏基因组学,它结合了分子生物学和遗传学来鉴定和表征多物种微生物样本的遗传物质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tree decomposition based fast search of RNA structures including pseudoknots in genomes. An algebraic geometry approach to protein structure determination from NMR data. A tree-decomposition approach to protein structure prediction. A pivoting algorithm for metabolic networks in the presence of thermodynamic constraints. A topological measurement for weighted protein interaction network.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1