Using chemical reaction network theory to discard a kinetic mechanism hypothesis.

C Conradi, J Saez-Rodriguez, E D Gilles, J Raisch
{"title":"Using chemical reaction network theory to discard a kinetic mechanism hypothesis.","authors":"C Conradi,&nbsp;J Saez-Rodriguez,&nbsp;E D Gilles,&nbsp;J Raisch","doi":"10.1049/ip-syb:20050045","DOIUrl":null,"url":null,"abstract":"<p><p>Feinberg's chemical reaction network theory (CRNT) connects the structure of a biochemical reaction network to qualitative properties of the corresponding system of ordinary differential equations. No information about parameter values is needed. As such, it seems to be well suited for application in systems biology, where parameter uncertainty is predominant. However, its application in this area is rare. To demonstrate the potential benefits from its application, different reaction networks representing a single layer of the well-studied mitogen-activated protein kinase (MAPK) cascade are analysed. Recent results from Markevich et al. (2004) show that, unexpectedly, multilayered protein kinase cascades can exhibit multistationarity, even on a single cascade level. Using CRNT, we show that their assumption of a distributive mechanism for double phosphorylation and dephosphorylation is crucial for multistationarity on the single cascade level.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"152 4","pages":"243-8"},"PeriodicalIF":0.0000,"publicationDate":"2005-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050045","citationCount":"77","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 77

Abstract

Feinberg's chemical reaction network theory (CRNT) connects the structure of a biochemical reaction network to qualitative properties of the corresponding system of ordinary differential equations. No information about parameter values is needed. As such, it seems to be well suited for application in systems biology, where parameter uncertainty is predominant. However, its application in this area is rare. To demonstrate the potential benefits from its application, different reaction networks representing a single layer of the well-studied mitogen-activated protein kinase (MAPK) cascade are analysed. Recent results from Markevich et al. (2004) show that, unexpectedly, multilayered protein kinase cascades can exhibit multistationarity, even on a single cascade level. Using CRNT, we show that their assumption of a distributive mechanism for double phosphorylation and dephosphorylation is crucial for multistationarity on the single cascade level.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用化学反应网络理论抛弃动力学机理假说。
Feinberg的化学反应网络理论(CRNT)将生化反应网络的结构与相应的常微分方程组的定性性质联系起来。不需要提供参数值信息。因此,它似乎很适合应用于系统生物学,其中参数不确定性占主导地位。然而,它在这一领域的应用很少。为了证明其应用的潜在好处,研究人员分析了不同的反应网络,这些反应网络代表了经过充分研究的丝裂原活化蛋白激酶(MAPK)级联的单层。Markevich等人(2004)最近的研究结果表明,出乎意料的是,多层蛋白激酶级联可以表现出多平稳性,即使在单个级联水平上也是如此。利用CRNT,我们证明了他们关于双磷酸化和去磷酸化的分配机制的假设对于单级联水平上的多平稳性至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systems theory of Smad signalling. Direct Lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Elimination of the initial value parameters when identifying a system close to a Hopf bifurcation. Decreased internalisation of erbB1 mutants in lung cancer is linked with a mechanism conferring sensitivity to gefitinib.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1