Summation theorems for flux and concentration control coefficients of dynamic systems.

R Conradie, H V Westerhoff, J M Rohwer, J H S Hofmeyr, J L Snoep
{"title":"Summation theorems for flux and concentration control coefficients of dynamic systems.","authors":"R Conradie,&nbsp;H V Westerhoff,&nbsp;J M Rohwer,&nbsp;J H S Hofmeyr,&nbsp;J L Snoep","doi":"10.1049/ip-syb:20060024","DOIUrl":null,"url":null,"abstract":"<p><p>Metabolic control analysis (MCA) was developed to quantify how system variables are affected by parameter variations in a system. In addition, MCA can express the global properties of a system in terms of the individual catalytic steps, using connectivity and summation theorems to link the control coefficients to the elasticity coefficients. MCA was originally developed for steady-state analysis and not all summation theorems have been derived for dynamic systems. A method to determine time-dependent flux and concentration control coefficients for dynamic systems by expressing the time domain as a function of percentage progression through any arbitrary fixed interval of time is reported. Time-dependent flux and concentration control coefficients of dynamic systems, provided that they are evaluated in this novel way, obey the same summation theorems as steady-state flux and concentration control coefficients, respectively.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"153 5","pages":"314-7"},"PeriodicalIF":0.0000,"publicationDate":"2006-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20060024","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20060024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

Abstract

Metabolic control analysis (MCA) was developed to quantify how system variables are affected by parameter variations in a system. In addition, MCA can express the global properties of a system in terms of the individual catalytic steps, using connectivity and summation theorems to link the control coefficients to the elasticity coefficients. MCA was originally developed for steady-state analysis and not all summation theorems have been derived for dynamic systems. A method to determine time-dependent flux and concentration control coefficients for dynamic systems by expressing the time domain as a function of percentage progression through any arbitrary fixed interval of time is reported. Time-dependent flux and concentration control coefficients of dynamic systems, provided that they are evaluated in this novel way, obey the same summation theorems as steady-state flux and concentration control coefficients, respectively.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
动态系统通量和浓度控制系数的求和定理。
代谢控制分析(MCA)的发展是为了量化系统变量如何受到系统参数变化的影响。此外,MCA可以用单个催化步骤表示系统的全局性质,使用连通性和求和定理将控制系数与弹性系数联系起来。MCA最初是为稳态分析而开发的,并不是所有的求和定理都是为动态系统导出的。本文报道了一种确定动态系统随时间变化的通量和浓度控制系数的方法,该方法将时域表示为任意固定时间间隔内百分比级数的函数。动态系统的随时间变化的通量和浓度控制系数,只要用这种新方法求值,分别遵循与稳态通量和浓度控制系数相同的求和定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systems theory of Smad signalling. Direct Lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Elimination of the initial value parameters when identifying a system close to a Hopf bifurcation. Decreased internalisation of erbB1 mutants in lung cancer is linked with a mechanism conferring sensitivity to gefitinib.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1