N Yalamanchili, D E Zak, B A Ogunnaike, J S Schwaber, A Kriete, B N Kholodenko
{"title":"Quantifying gene network connectivity in silico: scalability and accuracy of a modular approach.","authors":"N Yalamanchili, D E Zak, B A Ogunnaike, J S Schwaber, A Kriete, B N Kholodenko","doi":"10.1049/ip-syb:20050090","DOIUrl":null,"url":null,"abstract":"<p><p>Large, complex data sets that are generated from microarray experiments, create a need for systematic analysis techniques to unravel the underlying connectivity of gene regulatory networks. A modular approach, previously proposed by Kholodenko and co-workers, helps to scale down the network complexity into more computationally manageable entities called modules. A functional module includes a gene's mRNA, promoter and resulting products, thus encompassing a large set of interacting states. The essential elements of this approach are described in detail for a three-gene model network and later extended to a ten-gene model network, demonstrating scalability. The network architecture is identified by analysing in silico steady-state changes in the activities of only the module outputs, communicating intermediates, that result from specific perturbations applied to the network modules one at a time. These steady-state changes form the system response matrix, which is used to compute the network connectivity or network interaction map. By employing a known biochemical network, the accuracy of the modular approach and its sensitivity to key assumptions are evaluated.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"153 4","pages":"236-46"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-syb:20050090","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-syb:20050090","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Large, complex data sets that are generated from microarray experiments, create a need for systematic analysis techniques to unravel the underlying connectivity of gene regulatory networks. A modular approach, previously proposed by Kholodenko and co-workers, helps to scale down the network complexity into more computationally manageable entities called modules. A functional module includes a gene's mRNA, promoter and resulting products, thus encompassing a large set of interacting states. The essential elements of this approach are described in detail for a three-gene model network and later extended to a ten-gene model network, demonstrating scalability. The network architecture is identified by analysing in silico steady-state changes in the activities of only the module outputs, communicating intermediates, that result from specific perturbations applied to the network modules one at a time. These steady-state changes form the system response matrix, which is used to compute the network connectivity or network interaction map. By employing a known biochemical network, the accuracy of the modular approach and its sensitivity to key assumptions are evaluated.