Application of nano-indenter for investigation of the properties of the elytra cuticle of the dung beetle (Copris ochus Motschulsky).

J Y Sun, J Tong, J Zhou
{"title":"Application of nano-indenter for investigation of the properties of the elytra cuticle of the dung beetle (Copris ochus Motschulsky).","authors":"J Y Sun,&nbsp;J Tong,&nbsp;J Zhou","doi":"10.1049/ip-nbt:20050050","DOIUrl":null,"url":null,"abstract":"<p><p>The nanomechanical properties of the multilayer elytra cuticle of the dung beetle (Copris ochus Motschulsky) were investigated in the vertical and transverse directions using a nano-indenter. The reduced modulus Ev and hardness Hv of the surface cuticle in the vertical direction obtained by nano-indentation were 3.54+/-0.12 GPa and 0.20+/-0.01 GP, respectively. The nano-indentation result showed that the reduced modulus E(t) and hardness Ht of each layer were gradually reduced from the outer layer to the inner layer in the transverse direction. Ev was less than the largest Et presented at the outer layer (7.06+/-0.54 GPa). It was supposedly formed as a result of the composite effect of the multilayer. Without consideration of the anisotropy of chitin, an experimental model was proposed to describe the nanomechanical properties of the elytra cuticle.</p>","PeriodicalId":87402,"journal":{"name":"IEE proceedings. Nanobiotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2006-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/ip-nbt:20050050","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEE proceedings. Nanobiotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/ip-nbt:20050050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

The nanomechanical properties of the multilayer elytra cuticle of the dung beetle (Copris ochus Motschulsky) were investigated in the vertical and transverse directions using a nano-indenter. The reduced modulus Ev and hardness Hv of the surface cuticle in the vertical direction obtained by nano-indentation were 3.54+/-0.12 GPa and 0.20+/-0.01 GP, respectively. The nano-indentation result showed that the reduced modulus E(t) and hardness Ht of each layer were gradually reduced from the outer layer to the inner layer in the transverse direction. Ev was less than the largest Et presented at the outer layer (7.06+/-0.54 GPa). It was supposedly formed as a result of the composite effect of the multilayer. Without consideration of the anisotropy of chitin, an experimental model was proposed to describe the nanomechanical properties of the elytra cuticle.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
纳米压头在屎壳虫鞘翅角质层特性研究中的应用。
利用纳米压头对屎壳虫(Copris ochus Motschulsky)多层鞘翅角质层的纵向和横向纳米力学特性进行了研究。纳米压痕获得的表面角质层垂直方向的还原模量Ev和硬度Hv分别为3.54+/-0.12 GPa和0.20+/-0.01 GP。纳米压痕结果表明,各层的还原模量E(t)和硬度Ht在横向上由外层向内层逐渐降低。Ev小于外层最大Et (7.06+/-0.54 GPa)。它被认为是多层复合效应的结果。在不考虑甲壳素各向异性的情况下,提出了一种描述鞘翅角质层纳米力学特性的实验模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Absorption detection of enzymatic reaction using optical microfluidics based intermittent flow microreactor system. Dynamics of rotating paramagnetic particles simulated by lattice Boltzmann and particle dynamics methods. Application of nano-indenter for investigation of the properties of the elytra cuticle of the dung beetle (Copris ochus Motschulsky). Analysis of cellular structure by light scattering measurements in a new cytometer design based on a liquid-core waveguide. Paramagnetic capture mode magnetophoretic microseparator for blood cells.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1