STAT module can function as a biphasic amplitude filter.

V Mayya, L M Loew
{"title":"STAT module can function as a biphasic amplitude filter.","authors":"V Mayya,&nbsp;L M Loew","doi":"10.1049/sb:20045037","DOIUrl":null,"url":null,"abstract":"<p><p>Signal transducer and actuator of transcription (STATs) are a family of transcription factors activated by various cytokines, growth factors and hormones. They are important mediators of immune responses and growth and differentiation of various cell types. The STAT signalling system represents a defined functional module with a pattern of signalling that is conserved from flies to mammals. In order to probe and gain insights into the signalling properties of the STAT module by computational means, we developed a simple non-linear ordinary differential equations model within the 'Virtual Cell' framework. Our results demonstrate that the STAT module can operate as a 'biphasic amplitude filter' with an ability to amplify input signals within a specific intermediate range. We show that dimerisation of phosphorylated STAT is crucial for signal amplification and the amplitude filtering function. We also demonstrate that maximal amplification at intermediate levels of STAT activation is a moderately robust property of STAT module. We propose that these observations can be extrapolated to the analogous SMAD signalling module.</p>","PeriodicalId":87457,"journal":{"name":"Systems biology","volume":"2 1","pages":"43-52"},"PeriodicalIF":0.0000,"publicationDate":"2005-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1049/sb:20045037","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/sb:20045037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Signal transducer and actuator of transcription (STATs) are a family of transcription factors activated by various cytokines, growth factors and hormones. They are important mediators of immune responses and growth and differentiation of various cell types. The STAT signalling system represents a defined functional module with a pattern of signalling that is conserved from flies to mammals. In order to probe and gain insights into the signalling properties of the STAT module by computational means, we developed a simple non-linear ordinary differential equations model within the 'Virtual Cell' framework. Our results demonstrate that the STAT module can operate as a 'biphasic amplitude filter' with an ability to amplify input signals within a specific intermediate range. We show that dimerisation of phosphorylated STAT is crucial for signal amplification and the amplitude filtering function. We also demonstrate that maximal amplification at intermediate levels of STAT activation is a moderately robust property of STAT module. We propose that these observations can be extrapolated to the analogous SMAD signalling module.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
STAT模块可以作为双相幅度滤波器。
转录信号换能器和致动器(Signal transducer and actuator of transcription, STATs)是一类由多种细胞因子、生长因子和激素激活的转录因子。它们是免疫反应和各种细胞类型生长和分化的重要介质。STAT信号系统代表了一个定义的功能模块,其信号模式从苍蝇到哺乳动物都是保守的。为了通过计算手段探索和深入了解STAT模块的信号特性,我们在“虚拟单元”框架内开发了一个简单的非线性常微分方程模型。我们的研究结果表明,STAT模块可以作为“双相幅度滤波器”工作,具有在特定中间范围内放大输入信号的能力。我们发现磷酸化STAT的二聚化对于信号放大和幅度滤波功能至关重要。我们还证明了STAT激活的中间水平的最大放大是STAT模块的适度健壮性。我们建议这些观察结果可以外推到类似的SMAD信号模块。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systems theory of Smad signalling. Direct Lyapunov exponent analysis enables parametric study of transient signalling governing cell behaviour. Primary mouse hepatocytes for systems biology approaches: a standardized in vitro system for modelling of signal transduction pathways. Elimination of the initial value parameters when identifying a system close to a Hopf bifurcation. Decreased internalisation of erbB1 mutants in lung cancer is linked with a mechanism conferring sensitivity to gefitinib.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1