Stephanie Byrum, Samuel G Mackintosh, Ricky D Edmondson, Wang L Cheung, Sean D Taverna, Alan J Tackett
{"title":"Analysis of Histone Exchange during Chromatin Purification.","authors":"Stephanie Byrum, Samuel G Mackintosh, Ricky D Edmondson, Wang L Cheung, Sean D Taverna, Alan J Tackett","doi":"10.5584/jiomics.v1i1.26","DOIUrl":null,"url":null,"abstract":"<p><p>Central to the study of chromosome biology are techniques that permit the purification of small chromatin sections for analysis of associated DNA and proteins, including histones. Chromatin purification protocols vary greatly in the extent of chemical cross-linking used to prevent protein dissociation/re-association during isolation. Particularly for genome-wide analyses, chromatin purification requires a balanced level of fixation that captures native protein-protein and protein/DNA interactions, yet leaving chromatin sections soluble and accessible to affinity reagents. We have applied a relative quantification methodology called I-DIRT (isotopic differentiation of interactions as random or targeted) for optimizing levels of chemical cross-linking for affinity purification of cognate chromatin sections. We show that fine-tuning of chemical cross-linking is necessary for isolation of chromatin sections when minimal histone/protein exchange is required.</p>","PeriodicalId":37675,"journal":{"name":"Journal of Integrated OMICS","volume":"1 1","pages":"61-65"},"PeriodicalIF":0.0000,"publicationDate":"2011-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.5584/jiomics.v1i1.26","citationCount":"14","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Integrated OMICS","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5584/jiomics.v1i1.26","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 14
Abstract
Central to the study of chromosome biology are techniques that permit the purification of small chromatin sections for analysis of associated DNA and proteins, including histones. Chromatin purification protocols vary greatly in the extent of chemical cross-linking used to prevent protein dissociation/re-association during isolation. Particularly for genome-wide analyses, chromatin purification requires a balanced level of fixation that captures native protein-protein and protein/DNA interactions, yet leaving chromatin sections soluble and accessible to affinity reagents. We have applied a relative quantification methodology called I-DIRT (isotopic differentiation of interactions as random or targeted) for optimizing levels of chemical cross-linking for affinity purification of cognate chromatin sections. We show that fine-tuning of chemical cross-linking is necessary for isolation of chromatin sections when minimal histone/protein exchange is required.
期刊介绍:
JIOMICS provides a forum for the publication of original research papers, letters to the editor, short communications, and critical reviews in all branches of pure and applied –omics subjects, such as proteomics, metabolomics, metallomics and genomics. Especial interest is given to papers where more than one –omics subject is covered. Papers are evaluated based on scientific novelty and demonstrated scientific applicability. Original research papers on fundamental studies, and novel sensor and instrumentation development, are especially encouraged. Novel or improved findings in areas such as clinical, medicinal, biological, environmental and materials –omics are welcome.