{"title":"Accuracy of a 3D fluoroscopic navigation system using a flat-panel detector-equipped C-arm.","authors":"Masaki Takao, Kentaro Yabuta, Takashi Nishii, Takashi Sakai, Nobuhiko Sugano","doi":"10.3109/10929088.2011.602117","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>The aim of this study was to evaluate the accuracy of a novel 3-dimensional (3D) fluoroscopic navigation system using a flat-panel detector-equipped C-arm, focusing on the influence of the distance from the center of fluoroscopic imaging on navigation accuracy.</p><p><strong>Materials and methods: </strong>A geometric phantom was made using a Styrofoam cube with 25 markers, each consisting of a metal ball 1.5 mm in diameter, fixed in a cross arrangement at 1-cm intervals. Hip joint surgery was simulated using a set of dry pelvic and femoral bones. A total of eight markers were fixed to the acetabulum and proximal femur.</p><p><strong>Results: </strong>In the geometric phantom study, mean target registration error (TRE) was 0.7 mm (range: 0.1-1.5). The TRE of markers located at 5 cm from the imaging center was significantly higher than the TRE of markers located at 1 and 2 cm. However, the TRE was <1 mm in 90% of the overall trials and <1.5 mm in 100%. In the dry bone study, the mean TRE was 0.9 mm (range: 0.7-1.5) over the acetabulum and 1.0 mm (range: 0.5-1.4) over the femur. No significant difference in TRE was seen between the acetabulum and proximal femur.</p><p><strong>Conclusion: </strong>The accuracy of this novel 3D fluoroscopic navigation system was considered acceptable for clinical application. A 3D C-arm equipped with a flat-panel detector could increase the feasibility of 3D fluoroscopic navigation by reducing the effects of image distortion on navigation accuracy.</p>","PeriodicalId":50644,"journal":{"name":"Computer Aided Surgery","volume":"16 5","pages":"234-9"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.3109/10929088.2011.602117","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Aided Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3109/10929088.2011.602117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2011/8/2 0:00:00","PubModel":"Epub","JCR":"Q","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 9
Abstract
Objective: The aim of this study was to evaluate the accuracy of a novel 3-dimensional (3D) fluoroscopic navigation system using a flat-panel detector-equipped C-arm, focusing on the influence of the distance from the center of fluoroscopic imaging on navigation accuracy.
Materials and methods: A geometric phantom was made using a Styrofoam cube with 25 markers, each consisting of a metal ball 1.5 mm in diameter, fixed in a cross arrangement at 1-cm intervals. Hip joint surgery was simulated using a set of dry pelvic and femoral bones. A total of eight markers were fixed to the acetabulum and proximal femur.
Results: In the geometric phantom study, mean target registration error (TRE) was 0.7 mm (range: 0.1-1.5). The TRE of markers located at 5 cm from the imaging center was significantly higher than the TRE of markers located at 1 and 2 cm. However, the TRE was <1 mm in 90% of the overall trials and <1.5 mm in 100%. In the dry bone study, the mean TRE was 0.9 mm (range: 0.7-1.5) over the acetabulum and 1.0 mm (range: 0.5-1.4) over the femur. No significant difference in TRE was seen between the acetabulum and proximal femur.
Conclusion: The accuracy of this novel 3D fluoroscopic navigation system was considered acceptable for clinical application. A 3D C-arm equipped with a flat-panel detector could increase the feasibility of 3D fluoroscopic navigation by reducing the effects of image distortion on navigation accuracy.
期刊介绍:
The scope of Computer Aided Surgery encompasses all fields within surgery, as well as biomedical imaging and instrumentation, and digital technology employed as an adjunct to imaging in diagnosis, therapeutics, and surgery. Topics featured include frameless as well as conventional stereotaxic procedures, surgery guided by ultrasound, image guided focal irradiation, robotic surgery, and other therapeutic interventions that are performed with the use of digital imaging technology.