ASSESSMENT OF TISSUE OPTICAL CLEARING AS A FUNCTION OF GLUCOSE CONCENTRATION USING OPTICAL COHERENCE TOMOGRAPHY.

IF 2.3 3区 医学 Q2 OPTICS Journal of Innovative Optical Health Sciences Pub Date : 2010-01-01 DOI:10.1142/S1793545810001039
Narendran Sudheendran, Mohamed Mohamed, Mohamad G Ghosn, Valery V Tuchin, Kirill V Larin
{"title":"ASSESSMENT OF TISSUE OPTICAL CLEARING AS A FUNCTION OF GLUCOSE CONCENTRATION USING OPTICAL COHERENCE TOMOGRAPHY.","authors":"Narendran Sudheendran,&nbsp;Mohamed Mohamed,&nbsp;Mohamad G Ghosn,&nbsp;Valery V Tuchin,&nbsp;Kirill V Larin","doi":"10.1142/S1793545810001039","DOIUrl":null,"url":null,"abstract":"<p><p>One of the major challenges in imaging biological tissues using optical techniques, such as optical coherence tomography (OCT), is the lack of light penetration due to highly turbid structures within the tissue. Optical clearing techniques enable the biological samples to be more optically homogeneous, allowing for deeper penetration of light into the tissue. This study investigates the effect of optical clearing utilizing various concentrations of glucose solution (10%, 30%, and 50%) on porcine skin. A gold-plated mirror was imaged beneath the tissue and percentage clearing was determined by monitoring the change in reflected light intensity from the mirror over time. The ratio of percentage clearing per tissue thickness for 10%, 30% and 50% glucose was determined to be 4.7 ± 1.6% mm(-1) (n = 6), 10.6 ± 2.0% mm(-1) (n = 7) and 21.8 ± 2.2% mm(-1) (n = 5), respectively. It was concluded that while higher glucose concentration has the highest optical clearing effect, a suitable concentration should be chosen for the purpose of clearing, considering the osmotic stress on the tissue sample.</p>","PeriodicalId":16248,"journal":{"name":"Journal of Innovative Optical Health Sciences","volume":"3 3","pages":"169-176"},"PeriodicalIF":2.3000,"publicationDate":"2010-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1142/S1793545810001039","citationCount":"30","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Innovative Optical Health Sciences","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1142/S1793545810001039","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 30

Abstract

One of the major challenges in imaging biological tissues using optical techniques, such as optical coherence tomography (OCT), is the lack of light penetration due to highly turbid structures within the tissue. Optical clearing techniques enable the biological samples to be more optically homogeneous, allowing for deeper penetration of light into the tissue. This study investigates the effect of optical clearing utilizing various concentrations of glucose solution (10%, 30%, and 50%) on porcine skin. A gold-plated mirror was imaged beneath the tissue and percentage clearing was determined by monitoring the change in reflected light intensity from the mirror over time. The ratio of percentage clearing per tissue thickness for 10%, 30% and 50% glucose was determined to be 4.7 ± 1.6% mm(-1) (n = 6), 10.6 ± 2.0% mm(-1) (n = 7) and 21.8 ± 2.2% mm(-1) (n = 5), respectively. It was concluded that while higher glucose concentration has the highest optical clearing effect, a suitable concentration should be chosen for the purpose of clearing, considering the osmotic stress on the tissue sample.

Abstract Image

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用光学相干断层成像评估组织光学清晰度作为葡萄糖浓度的函数。
使用光学技术(如光学相干断层扫描(OCT))对生物组织进行成像的主要挑战之一是由于组织内高度浑浊的结构而缺乏光穿透。光学清除技术使生物样品在光学上更加均匀,允许更深的光穿透组织。本研究探讨了利用不同浓度的葡萄糖溶液(10%、30%和50%)对猪皮肤进行光学清除的效果。在组织下方的镀金镜子被成像,通过监测镜子反射的光强度随时间的变化来确定清除的百分比。10%、30%和50%葡萄糖对组织厚度的清除率分别为4.7±1.6% mm(-1) (n = 6)、10.6±2.0% mm(-1) (n = 7)和21.8±2.2% mm(-1) (n = 5)。综上所述,虽然较高的葡萄糖浓度具有最高的光学清除效果,但考虑到组织样品的渗透应力,应选择合适的浓度进行清除。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Innovative Optical Health Sciences
Journal of Innovative Optical Health Sciences OPTICS-RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
CiteScore
4.50
自引率
20.00%
发文量
69
审稿时长
>12 weeks
期刊介绍: JIOHS serves as an international forum for the publication of the latest developments in all areas of photonics in biology and medicine. JIOHS will consider for publication original papers in all disciplines of photonics in biology and medicine, including but not limited to: -Photonic therapeutics and diagnostics- Optical clinical technologies and systems- Tissue optics- Laser-tissue interaction and tissue engineering- Biomedical spectroscopy- Advanced microscopy and imaging- Nanobiophotonics and optical molecular imaging- Multimodal and hybrid biomedical imaging- Micro/nanofabrication- Medical microsystems- Optical coherence tomography- Photodynamic therapy. JIOHS provides a vehicle to help professionals, graduates, engineers, academics and researchers working in the field of intelligent photonics in biology and medicine to disseminate information on the state-of-the-art technique.
期刊最新文献
Label-free in-vivo classification and tracking of red blood cells and platelets using Dynamic-YOLOv4 network Unified deep learning model for predicting fundus fluorescein angiography image from fundus structure image Review of polarization-based technology for biomedical applications Spatial sensitivity to absorption changes for various near-infrared spectroscopy methods: A compendium review Distal-scanning common path probe for optical coherence tomography
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1