An alkaline microfluidic fuel cell based on formate and hypochlorite bleach

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY Electrochimica Acta Pub Date : 2008-12-30 DOI:10.1016/j.electacta.2008.07.009
Erik Kjeang , Raphaelle Michel , David A. Harrington , David Sinton , Ned Djilali
{"title":"An alkaline microfluidic fuel cell based on formate and hypochlorite bleach","authors":"Erik Kjeang ,&nbsp;Raphaelle Michel ,&nbsp;David A. Harrington ,&nbsp;David Sinton ,&nbsp;Ned Djilali","doi":"10.1016/j.electacta.2008.07.009","DOIUrl":null,"url":null,"abstract":"<div><p><span><span>An alkaline microfluidic fuel cell is demonstrated employing an alkaline version of a </span>formic acid<span><span> anode and a sodium hypochlorite<span> cathode. Both sodium formate fuel and sodium hypochlorite oxidant are available and stable as highly concentrated solutions, thereby facilitating </span></span>fuel cell systems with high overall energy density. Sodium hypochlorite is commonly available as hypochlorite bleach. The alkaline anodic half-cell produces carbonate rather than the less-desirable gaseous CO</span></span><sub>2</sub><span>, while sustaining the rapid kinetics associated with formic acid oxidation<span> in acidic media. Both half-cells provide high current densities at relatively low overpotentials and are free of gaseous products that may otherwise limit microfluidic fuel cell performance. The microfluidic fuel cell takes advantage of a recently developed membraneless architecture with flow-through porous electrodes. Power densities up to 52</span></span> <!-->mW<!--> <!-->cm<sup>−2</sup><span> and overall energy conversion efficiencies up to 30% per single pass are demonstrated at room temperature using 1.2</span> <!-->M formate fuel and 0.67<!--> <span>M hypochlorite oxidant. The alkaline formate/hypochlorite fuel and oxidant combination demonstrated here, or either one of its individual half-cells, may also be useful in conventional membrane-based fuel cell designs.</span></p></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":null,"pages":null},"PeriodicalIF":5.5000,"publicationDate":"2008-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.electacta.2008.07.009","citationCount":"103","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0013468608008554","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 103

Abstract

An alkaline microfluidic fuel cell is demonstrated employing an alkaline version of a formic acid anode and a sodium hypochlorite cathode. Both sodium formate fuel and sodium hypochlorite oxidant are available and stable as highly concentrated solutions, thereby facilitating fuel cell systems with high overall energy density. Sodium hypochlorite is commonly available as hypochlorite bleach. The alkaline anodic half-cell produces carbonate rather than the less-desirable gaseous CO2, while sustaining the rapid kinetics associated with formic acid oxidation in acidic media. Both half-cells provide high current densities at relatively low overpotentials and are free of gaseous products that may otherwise limit microfluidic fuel cell performance. The microfluidic fuel cell takes advantage of a recently developed membraneless architecture with flow-through porous electrodes. Power densities up to 52 mW cm−2 and overall energy conversion efficiencies up to 30% per single pass are demonstrated at room temperature using 1.2 M formate fuel and 0.67 M hypochlorite oxidant. The alkaline formate/hypochlorite fuel and oxidant combination demonstrated here, or either one of its individual half-cells, may also be useful in conventional membrane-based fuel cell designs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于甲酸和次氯酸漂白剂的碱性微流控燃料电池
一种碱性微流控燃料电池演示采用碱性版本的甲酸阳极和次氯酸钠阴极。甲酸钠燃料和次氯酸钠氧化剂都可以作为高浓度的稳定溶液,从而促进燃料电池系统具有高的总能量密度。次氯酸钠通常用作次氯酸漂白剂。碱性阳极半电池产生碳酸盐,而不是不太理想的气体二氧化碳,同时在酸性介质中保持与甲酸氧化相关的快速动力学。这两种半电池在相对较低的过电位下提供高电流密度,并且没有可能限制微流体燃料电池性能的气体产物。微流体燃料电池利用了最近开发的无膜结构与流动通过多孔电极。在室温下,使用1.2 M甲酸盐燃料和0.67 M次氯酸盐氧化剂,功率密度高达52 mW cm - 2,单次通过的总能量转换效率高达30%。本文所展示的碱性甲酸盐/次氯酸盐燃料和氧化剂的组合,或其单个半电池中的任何一种,也可用于传统的膜基燃料电池设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
期刊最新文献
Corrigendum to the author information of “Solvent-derived inorganic F and N-rich solid electrolyte interface for stable lithium metal batteries” [Electrochimica Acta, Volume 503, 2024, 144909] Facile sulfur chemistry assisted carbon reconfiguration for efficient potassium ion electrochemical storage Effect of ammoniacal thiosulfate solution composition on the gold dissolution rate: An electrochemical study Enhanced Long-Term Stability of Zinc-Air Batteries Using a Quaternized PVA-Chitosan Composite Separator with Thin-Layered MoS2 Guidance for targeted degradation analysis of OER kinetics of low-loading iridium-based catalysts in PEM water electrolysis cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1