Identification of common tumor signatures based on gene set enrichment analysis.

Q2 Medicine In Silico Biology Pub Date : 2011-01-01 DOI:10.3233/ISB-2012-0440
Xiaosheng Wang
{"title":"Identification of common tumor signatures based on gene set enrichment analysis.","authors":"Xiaosheng Wang","doi":"10.3233/ISB-2012-0440","DOIUrl":null,"url":null,"abstract":"<p><p>The identification of common tumor signatures can discover the shared molecular mechanisms underlying tumorgenesis whereby we can prevent and treat tumors by a system intervention. We identified tumor-associated signatures including pathways, transcription factors, microRNAs and gene ontology categories by analyzing gene sets for differential expression between normal vs. tumor phenotypes classes in various tumor gene expression datasets. We obtained the common tumor signatures based on their identified frequencies for different tumor types. Some shared signatures important for various tumor types were uncovered and discussed. We proposed that the interventions aiming at both the shared tumor signatures and the tissue-specific tumor signatures might be a potential approach to overcoming cancer.</p>","PeriodicalId":39379,"journal":{"name":"In Silico Biology","volume":"11 1-2","pages":"1-10"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579559/pdf/nihms443974.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"In Silico Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/ISB-2012-0440","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0

Abstract

The identification of common tumor signatures can discover the shared molecular mechanisms underlying tumorgenesis whereby we can prevent and treat tumors by a system intervention. We identified tumor-associated signatures including pathways, transcription factors, microRNAs and gene ontology categories by analyzing gene sets for differential expression between normal vs. tumor phenotypes classes in various tumor gene expression datasets. We obtained the common tumor signatures based on their identified frequencies for different tumor types. Some shared signatures important for various tumor types were uncovered and discussed. We proposed that the interventions aiming at both the shared tumor signatures and the tissue-specific tumor signatures might be a potential approach to overcoming cancer.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于基因组富集分析的常见肿瘤特征识别。
识别共同的肿瘤特征可以发现肿瘤发生的共同分子机制,从而通过系统干预预防和治疗肿瘤。我们通过分析各种肿瘤基因表达数据集中正常与肿瘤表型类别之间差异表达的基因集,确定了包括通路、转录因子、microRNA 和基因本体论类别在内的肿瘤相关特征。我们根据不同肿瘤类型的识别频率获得了常见的肿瘤特征。我们发现并讨论了一些对不同肿瘤类型都很重要的共同特征。我们提出,针对共有肿瘤特征和组织特异性肿瘤特征的干预措施可能是攻克癌症的一种潜在方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
In Silico Biology
In Silico Biology Computer Science-Computational Theory and Mathematics
CiteScore
2.20
自引率
0.00%
发文量
1
期刊介绍: The considerable "algorithmic complexity" of biological systems requires a huge amount of detailed information for their complete description. Although far from being complete, the overwhelming quantity of small pieces of information gathered for all kind of biological systems at the molecular and cellular level requires computational tools to be adequately stored and interpreted. Interpretation of data means to abstract them as much as allowed to provide a systematic, an integrative view of biology. Most of the presently available scientific journals focus either on accumulating more data from elaborate experimental approaches, or on presenting new algorithms for the interpretation of these data. Both approaches are meritorious.
期刊最新文献
Modelling speciation: Problems and implications. Where Do CABs Exist? Verification of a specific region containing concave Actin Bundles (CABs) in a 3-Dimensional confocal image. scAN1.0: A reproducible and standardized pipeline for processing 10X single cell RNAseq data. Modeling and characterization of inter-individual variability in CD8 T cell responses in mice. Cancer immunoediting: A game theoretical approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1