A Scalable, Flexible Workflow for MethylCap-Seq Data Analysis.

Benjamin Rodriguez, Hok-Hei Tam, David Frankhouser, Michael Trimarchi, Mark Murphy, Chris Kuo, Deval Parikh, Bryan Ball, Sebastian Schwind, John Curfman, William Blum, Guido Marcucci, Pearlly Yan, Ralf Bundschuh
{"title":"A Scalable, Flexible Workflow for MethylCap-Seq Data Analysis.","authors":"Benjamin Rodriguez,&nbsp;Hok-Hei Tam,&nbsp;David Frankhouser,&nbsp;Michael Trimarchi,&nbsp;Mark Murphy,&nbsp;Chris Kuo,&nbsp;Deval Parikh,&nbsp;Bryan Ball,&nbsp;Sebastian Schwind,&nbsp;John Curfman,&nbsp;William Blum,&nbsp;Guido Marcucci,&nbsp;Pearlly Yan,&nbsp;Ralf Bundschuh","doi":"10.1109/GENSiPS.2011.6169426","DOIUrl":null,"url":null,"abstract":"<p><p>Advances in whole genome profiling have revolutionized the cancer research field, but at the same time have raised new bioinformatics challenges. For next generation sequencing (NGS), these include data storage, computational costs, sequence processing and alignment, delineating appropriate statistical measures, and data visualization. The NGS application MethylCap-seq involves the in vitro capture of methylated DNA and subsequent analysis of enriched fragments by massively parallel sequencing. Here, we present a scalable, flexible workflow for MethylCap-seq Quality Control, secondary data analysis, tertiary analysis of multiple experimental groups, and data visualization. This workflow and its suite of features will assist biologists in conducting methylation profiling projects and facilitate meaningful biological interpretation.</p>","PeriodicalId":73289,"journal":{"name":"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics","volume":" ","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2011-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1109/GENSiPS.2011.6169426","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Workshop on Genomic Signal Processing and Statistics : [proceedings]. IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSiPS.2011.6169426","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Advances in whole genome profiling have revolutionized the cancer research field, but at the same time have raised new bioinformatics challenges. For next generation sequencing (NGS), these include data storage, computational costs, sequence processing and alignment, delineating appropriate statistical measures, and data visualization. The NGS application MethylCap-seq involves the in vitro capture of methylated DNA and subsequent analysis of enriched fragments by massively parallel sequencing. Here, we present a scalable, flexible workflow for MethylCap-seq Quality Control, secondary data analysis, tertiary analysis of multiple experimental groups, and data visualization. This workflow and its suite of features will assist biologists in conducting methylation profiling projects and facilitate meaningful biological interpretation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个可扩展的,灵活的工作流程甲基cap - seq数据分析。
全基因组图谱的进步使癌症研究领域发生了革命性的变化,但同时也提出了新的生物信息学挑战。对于下一代测序(NGS),这些包括数据存储、计算成本、序列处理和比对、描述适当的统计测量和数据可视化。NGS应用MethylCap-seq包括体外捕获甲基化DNA,随后通过大规模平行测序对富集片段进行分析。在这里,我们提出了一个可扩展的,灵活的工作流程,用于MethylCap-seq质量控制,二级数据分析,多个实验组的三级分析和数据可视化。该工作流程及其功能套件将帮助生物学家进行甲基化分析项目,并促进有意义的生物学解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Integrative Sparse Bayesian Analysis of High-dimensional Multi-platform Genomic Data in Glioblastoma. Integrative Analysis of Multi-modal Correlated Imaging-Genomics Data in Glioblastoma. An Approach for Assessing RNA-seq Quantification Algorithms in Replication Studies. A Bayesian Graphical Model for Integrative Analysis of TCGA Data. Sparse Bayesian Graphical Models for RPPA Time Course Data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1